348 resultados para Circulating tumor cells
Resumo:
The long-chain acyl-coenzyme A synthetase (ACS) gene gives rise to three transcripts containing different first exons preceded by specific regulatory regions A, B, and C. Exon-specific oligonucleotide hybridization indicated that only A-ACS mRNA is expressed in rat liver. Fibrate administration induced liver C-ACS strongly and A-ACS mRNA to a lesser extent. B-ACS mRNA remained undetectable. In primary rat hepatocytes and Fa-32 hepatoma cells C-ACS mRNA increased after treatment with fenofibric acid, alpha-bromopalmitate, tetradecylthioacetic acid, or alpha-linolenic acid. Nuclear run-on experiments indicated that fenofibric acid and alpha-bromopalmitate act at the transcriptional level. Transient transfections showed a 3.4-, 2.3-, and 2.2-fold induction of C-ACS promoter activity after fenofibric acid, alpha-bromopalmitate, and tetradecylthioacetic acid, respectively. Unilateral deletion and site-directed mutagenesis identified a peroxisome proliferator activator receptor (PPAR)-responsive element (PPRE) mediating the responsiveness to fibrates and fatty acids. This ACS PPRE contains three imperfect half sites spaced by 1 and 3 oligonucleotides and binds PPAR.retinoid X receptor heterodimers in gel retardation assays. In conclusion, the regulation of C-ACS mRNA expression by fibrates and fatty acids is mediated by PPAR.retinoid X receptor heterodimers interacting through a PPRE in the C-ACS promoters. PPAR therefore occupies a key position in the transcriptional control of a pivotal enzyme controlling the channeling of fatty acids into various metabolic pathways.
Resumo:
Cervical cancer results from infection with high-risk type human papillomaviruses (HPV). Therapeutic vaccines aiming at controlling existing genital HPV infections and associated lesions are usually tested in mice with HPV-expressing tumor cells subcutaneously implanted into their flank. However, effective vaccine-induced regression of these ectopic tumors strongly contrasts with the poor clinical results of these vaccines produced in patients with HPV-associated genital neoplasia. To assess HPV therapeutic vaccines in a more relevant setting, we have, here, established an orthotopic mouse model where tumors in the genital mucosa (GM) develop after an intravaginal instillation of HPV16 E6/E7-expressing tumor cells transduced with a luciferase-encoding lentiviral vector for in vivo imaging of tumor growth. Tumor take was 80-90% after nonoxynol-9 induced damage of the epithelium. Tumors remained localized in the genital tract, and histological analysis showed that most tumors grew within the squamous epithelium of the vaginal wall. Those tumors induced (i) E7-specific CD8 T cells restricted to the GM and draining lymph nodes, in agreement with their mucosal location and (ii) high Foxp3+ CD4+ infiltrates, similarly to those found in natural non-regressing HPV lesions. This novel genital HPV-tumor model by requiring GM homing of vaccine-induced immune responses able to overcome local immuno-suppression may be more representative of the situation occurring in patients upon therapeutic vaccination.
Resumo:
The role of retinoic acids (RA) on liver fatty acid-binding protein (L-FABP) expression was investigated in the well differentiated FAO rat hepatoma cell line. 9-cis-Retinoic acid (9-cis-RA) specifically enhanced L-FABP mRNA levels in a time- and dose-dependent manner. The higher induction was found 6 h after addition of 10(-6) M 9-cis-RA in the medium. RA also enhanced further both L-FABP mRNA levels and cytosolic L-FABP protein content induced by oleic acid. The retinoid X receptor (RXR) and the peroxisome proliferator-activated receptor (PPAR), which are known to be activated, respectively, by 9-cis-RA and long chain fatty acid (LCFA), co-operated to bind specifically the peroxisome proliferator-responsive element (PPRE) found upstream of the L-FABP gene. Our result suggest that the PPAR-RXR complex is the molecular target by which 9-cis-RA and LCFA regulate the L-FABP gene.
Resumo:
Purpose:Chemokine receptors are transmembrane G coupled proteins that might be involved in the directional metastatic migration of tumor cells to specific organs. CXCR4 and CCR7 have been implicated in the selective metastasis of cutaneous melanoma cells to lung and lymph node, respectively. CCR6 is expressed in metastases from colon, ovarian and thyroid carcinomas to the liver where its ligand, CCL20, is constitutively expressed. As uveal melanomas frequently metastasize to the liver, we hypothesized that specific chemokine receptors and their respective ligands might be involved in metastasis of uveal melanoma to the liver. Methods:Tissue microarrays were constructed using 100 non irradiated primary uveal melanomas and 84 liver metastases, as well as 12 non liver metastases, collected from the files of Jules Gonin Eye Hospital and Pathology Institute, University of Lausanne. Immunohistochemistry was performed using anti-human CXCR4, SDF1, CCR7, CCL21 and CCR6 antibodies. Results:CXCR4 expression was detected in 36% of primary uveal melanomas and in 63% of liver metastases but no expression was found in metastases to other organs, except for one pancreatic metastasis. SDF1 expression was detected in 3% of primary uveal melanomas and in 26% of liver metastases, as well as in pancreas, lymph node and breast metastases. CCR6 expression was observed in the majority of primary uveal melanomas and liver metastases (73 and 88%, respectively). In addition, CCR6 was also detected in 9 metastases to other organs (pancreas, thyroid, lymph node, skin and breast). CCR7 and CCL21 were neither detected in primary uveal melanoma, nor in the metastases. Conclusions:Chemokine receptors CCR6 and CXCR4 are expressed in a large number of primary uveal melanomas and in uveal melanoma metastases to the liver. CCR6 is also expressed in a small number of metastases to other organs. These findings form the basis for further studies on the potential involvement of CXCR4 and CCR6 in the selective metastasis of uveal melanoma to the liver.
Resumo:
The Ly49A NK cell receptor interacts with MHC class I (MHC-I) molecules on target cells and negatively regulates NK cell-mediated target cell lysis. We have recently shown that the MHC-I ligand-binding capacity of the Ly49A NK cell receptor is controlled by the NK cells' own MHC-I. To see whether this property was unique to Ly49A, we have investigated the binding of soluble MHC-I multimers to the Ly49 family receptors expressed in MHC-I-deficient and -sufficient C57BL/6 mice. In this study, we confirm the binding of classical MHC-I to the inhibitory Ly49A, C and I receptors, and demonstrate that detectable MHC-I binding to MHC-I-deficient NK cells is exclusively mediated by these three receptors. We did not detect significant multimer binding to stably transfected or NK cell-expressed Ly49D, E, F, G, and H receptors. Yet, we identified the more distantly related Ly49B and Ly49Q, which are not expressed by NK cells, as two novel MHC-I receptors in mice. Furthermore, we show using MHC-I-sufficient mice that the NK cells' own MHC-I significantly masks the Ly49A and Ly49C, but not the Ly49I receptor. Nevertheless, Ly49I was partly masked on transfected tumor cells, suggesting that the structure of Ly49I is compatible in principal with cis binding of MHC-I. Finally, masking of Ly49Q by cis MHC-I was minor, whereas masking of Ly49B was not detected. These data significantly extend the MHC-I specificity of Ly49 family receptors and show that the accessibility of most, but not all, MHC-I-binding Ly49 receptors is modulated by the expression of MHC-I in cis.
Resumo:
The widely expressed protein Fas is a member of the tumour necrosis factor receptor family which can trigger apoptosis. However, Fas surface expression does not necessarily render cells susceptible to Fas ligand-induced death signals, indicating that inhibitors of the apoptosis-signalling pathway must exist. Here we report the characterization of an inhibitor of apoptosis, designated FLIP (for FLICE-inhibitory protein), which is predominantly expressed in muscle and lymphoid tissues. The short form, FLIPs, contains two death effector domains and is structurally related to the viral FLIP inhibitors of apoptosis, whereas the long form, FLIP(L), contains in addition a caspase-like domain in which the active-centre cysteine residue is substituted by a tyrosine residue. FLIPs and FLIP(L) interact with the adaptor protein FADD and the protease FLICE, and potently inhibit apoptosis induced by all known human death receptors. FLIP(L) is expressed during the early stage of T-cell activation, but disappears when T cells become susceptible to Fas ligand-mediated apoptosis. High levels of FLIP(L) protein are also detectable in melanoma cell lines and malignant melanoma tumours. Thus FLIP may be implicated in tissue homeostasis as an important regulator of apoptosis.
Resumo:
Recognition by the T-cell receptor (TCR) of immunogenic peptides (p) presented by class I major histocompatibility complexes (MHC) is the key event in the immune response against virus infected cells or tumor cells. The major determinant of T cell activation is the affinity of the TCR for the peptide-MHC complex, though kinetic parameters are also important. A study of the 2C TCR/SIYR/H-2Kb system using a binding free energy decomposition (BFED) based on the MM-GBSA approach had been performed to assess the performance of the approach on this system. The results showed that the TCR-p-MHC BFED including entropic terms provides a detailed and reliable description of the energetics of the interaction (Zoete and Michielin, 2007). Based on these results, we have developed a new approach to design sequence modifications for a TCR recognizing the human leukocyte antigen (HLA)-A2 restricted tumor epitope NY-ESO-1. NY-ESO-1 is a cancer testis antigen expressed not only in melanoma, but also on several other types of cancers. It has been observed at high frequencies in melanoma patients with unusually positive clinical outcome and, therefore, represents an interesting target for adoptive transfer with modified TCR. Sequence modifications of TCR potentially increasing the affinity for this epitope have been proposed and tested in vitro. T cells expressing some of the proposed TCR mutants showed better T cell functionality, with improved killing of peptide-loaded T2 cells and better proliferative capacity compared to the wild type TCR expressing cells. These results open the door of rational TCR design for adoptive transfer cancer therapy.
Resumo:
PPARalpha and PPARbeta are expressed in the mouse epidermis during fetal development, but their expression progressively disappears after birth. However, the expression of PPARbeta is reactivated in adult mice upon proliferative stimuli, such as cutaneous injury. We show here that PPARbeta protects keratinocytes from growth factor deprivation, anoikis and TNF-alpha-induced apoptosis, by modulating both early and late apoptotic events via the Akt1 signaling pathway and DNA fragmentation, respectively. The control mechanisms involve direct transcriptional upregulation of ILK, PDK1, and ICAD-L. In accordance with the anti-apoptotic role of PPARbeta observed in vitro, the balance between proliferation and apoptosis is altered in the epidermis of wounded PPARbeta mutant mice, with increased keratinocyte proliferation and apoptosis. In addition, primary keratinocytes deleted for PPARbeta show defects in both cell-matrix and cell-cell contacts, and impaired cell migration. Together, these results suggest that the delayed wound closure observed in PPARbeta mutant mice involves the alteration of several key processes. Finally, comparison of PPARbeta and Akt1 knock-out mice reveals many similarities, and suggests that the ability of PPARbeta to modulate the Akt1 pathway has significant impact during skin wound healing.
Resumo:
Proneuropeptide Y (ProNPY) undergoes cleavage at a single dibasic site Lys38-Arg39 resulting in the formation of 1-39 amino acid NPY which is further processed successively by carboxypeptidase-like and peptidylglycine alpha-amidating monooxygenase enzymes. To investigate whether prohormone convertases are involved in ProNPY processing, a vaccinia virus derived expression system was used to coexpress recombinant ProNPY with each of the prohormone convertases PC1/3, PC2, furin, and PACE4 in Neuro2A and NIH 3T3 cell lines as regulated neuroendocrine and constitutive prototype cell lines, respectively. The analysis of processed products shows that only PC1/3 generates NPY in NIH 3T3 cells while both PC1/3 and PC2 are able to generate NPY in Neuro2A cells. The convertases furin and PACE4 are unable to process ProNPY in either cell line. Moreover, comparative in vitro cleavage of recombinant NPY precursor by the enzymes PC1/3, PC2 and furin shows that only PC1/3 and PC2 are involved in specific cleavage of the dibasic site. Kinetic studies demonstrate that PC1/3 cleaves ProNPY more efficiently than PC2. The main difference between the cleavage efficiency is observed in the Vmax values whereas no major difference is observed in Km values. In addition the cleavage by PC1/3 and PC2 of two peptides reproducing the dibasic cleavage site with different amino acid sequence lengths namely (20-49)-ProNPY and (28-43)-ProNPY was studied. These shortened ProNPY substrates, when recognized by the enzymes, are more efficiently cleaved than ProNPY itself. The shortest peptide is not cleaved by PC2 while it is by PC1/3. On the basis of these observations it is proposed, first, that the constitutive secreted NPY does not result from the cleavage carried out by ubiquitously expressed enzymes furin and PACE4; second, that PC1/3 and PC2 are not equipotent in the cleavage of ProNPY; and third, substrate peptide length might discriminate PC1/3 and PC2 processing activity.
Resumo:
T cells expressing T cell receptor (TCR) complexes that lack CD3 delta, either due to deletion of the CD3 delta gene, or by replacement of the connecting peptide of the TCR alpha chain, exhibit severely impaired positive selection and TCR-mediated activation of CD8 single-positive T cells. Because the same defects have been observed in mice expressing no CD8 beta or tailless CD8 beta, we examined whether CD3 delta serves to couple TCR.CD3 with CD8. To this end we used T cell hybridomas and transgenic mice expressing the T1 TCR, which recognizes a photoreactive derivative of the PbCS 252-260 peptide in the context of H-2K(d). We report that, in thymocytes and hybridomas expressing the T1 TCR.CD3 complex, CD8 alpha beta associates with the TCR. This association was not observed on T1 hybridomas expressing only CD8 alpha alpha or a CD3 delta(-) variant of the T1 TCR. CD3 delta was selectively co-immunoprecipitated with anti-CD8 antibodies, indicating an avid association of CD8 with CD3 delta. Because CD8 alpha beta is a raft constituent, due to this association a fraction of TCR.CD3 is raft-associated. Cross-linking of these TCR-CD8 adducts results in extensive TCR aggregate formation and intracellular calcium mobilization. Thus, CD3 delta couples TCR.CD3 with raft-associated CD8, which is required for effective activation and positive selection of CD8(+) T cells.
Resumo:
Introduction: Diffuse large B-cell lymphomas (DLBCL) represent a heterogeneous disease with variable clinical outcome. Identifying phenotypic biomarkers of tumor cells on paraffin sections that predict different clinical outcome remain an important goal that may also help to better understand the biology of this lymphoma. Differentiating non-germinal centre B-cell-like (non-GCB) from Germinal Centre B-cell-like (GCB) DLBCL according to Hans algorithm has been considered as an important immunohistochemical biomarker with prognostic value among patients treated with R-CHOP although not reproducibly found by all groups. Gene expression studies have also shown that IgM expression might be used as a surrogate for the GCB and ABC subtypes with a strong preferential expression of IgM in ABC DLBCL subtype. ImmunoFISH index based on the differential expression of MUM-1, FOXP1 by immunohistochemistry and on the BCL6 rearrangement by FISH has been previously reported (C Copie-Bergman, J Clin Oncol. 2009;27:5573-9) as prognostic in an homogeneous series of DLBCL treated with R-CHOP. In addition, oncogenic MYC protein overexpression by immunohistochemistry may represent an easy tool to identify the consequences of MYC deregulation in DLBCL. Our aim was to analyse by immunohistochemistry the prognostic relevance of MYC, IgM, GCB/nonGCB subtype and ImmunoFISH index in a large series of de novo DLBCL treated with Rituximab (R)-chemotherapy (anthracyclin based) included in the 2003 program of the Groupe d'Etude des Lymphomes de l'Adulte (GELA) trials. Methods: The 2003 program included patients with de novo CD20+ DLBCL enrolled in 6 different LNH-03 GELA trials (LNH-03-1B, -B, -3B, 39B, -6B, 7B) stratifying patients according to age and age-adjusted IPI. Tumor samples were analyzed by immunohistochemistry using CD10, BCL6, MUM1, FOXP1 (according to Barrans threshold), MYC, IgM antibodies on tissue microarrays and by FISH using BCL6 split signal DNA probes. Considering evaluable Hans score, 670 patients were included in the study with 237 (35.4%) receiving intensive R-ACVBP regimen and 433 (64.6%) R-CHOP/R-mini-CHOP. Results: 304 (45.4%) DLBCL were classified as GCB and 366 (54.6%) as non-GCB according to Hans algorithm. 337/567 cases (59.4%) were positive for the ImmunoFISH index (i.e. two out of the three markers positive: MUM1 protein positive, FOXP1 protein Variable or Strong, BCL6 rearrangement). Immunofish index was preferentially positive in the non-GCB subtype (81.3%) compared to the GCB subtype (31.2%), (p<0.001). IgM was recorded as positive in tumor cells in 351/637 (52.4%) DLBCL cases with a preferential expression in non-GCB 195 (53.3%) vs GCB subtype 100(32.9%), p<0.001). MYC was positive in 170/577 (29.5%) cases with a 40% cut-off and in 44/577 (14.2%) cases with a cut-off of 70%. There was no preferential expression of MYC among GCB or non-GCB subtype (p>0.4) for both cut-offs. Progression-free Survival (PFS) was significantly worse among patients with high IPI score (p<0.0001), IgM positive tumor (p<0.0001), MYC positive tumor with a 40% threshold (p<0.001), ImmunoFISH positive index (p<0.002), non-GCB DLBCL subtype (p<0.0001). Overall Survival (OS) was also significantly worse among patients with high IPI score (p<0.0001), IgM positive tumor (p=0.02), MYC positive tumor with a 40% threshold (p<0.01), ImmunoFISH positive index (p=0.02), non-GCB DLBCL subtype (p<0.0001). All significant parameters were included in a multivariate analysis using Cox Model and in addition to IPI, only the GCB/non-GCB subtype according to Hans algorithm predicted significantly a worse PFS among non-GCB subgroup (HR 1.9 [1.3-2.8] p=0.002) as well as a worse OS (HR 2.0 [1.3-3.2], p=0.003). This strong prognostic value of non-GCB subtyping was confirmed considering only patients treated with R- CHOP for PFS (HR 2.1 [1.4-3.3], p=0.001) and for OS (HR 2.3 [1.3-3.8], p=0.002). Conclusion: Our study on a large series of patients included in trials confirmed the relevance of immunohistochemistry as a useful tool to identify significant prognostic biomarkers for clinical use. We show here that IgM and MYC might be useful prognostic biomarkers. In addition, we confirmed in this series the prognostic value of the ImmunoFISH index. Above all, we fully validated the strong and independent prognostic value of the Hans algorithm, daily used by the pathologists to subtype DLBCL.
Resumo:
The relationship between hypoxic stress, autophagy, and specific cell-mediated cytotoxicity remains unknown. This study shows that hypoxia-induced resistance of lung tumor to cytolytic T lymphocyte (CTL)-mediated lysis is associated with autophagy induction in target cells. In turn, this correlates with STAT3 phosphorylation on tyrosine 705 residue (pSTAT3) and HIF-1α accumulation. Inhibition of autophagy by siRNA targeting of either beclin1 or Atg5 resulted in impairment of pSTAT3 and restoration of hypoxic tumor cell susceptibility to CTL-mediated lysis. Furthermore, inhibition of pSTAT3 in hypoxic Atg5 or beclin1-targeted tumor cells was found to be associated with the inhibition Src kinase (pSrc). Autophagy-induced pSTAT3 and pSrc regulation seemed to involve the ubiquitin proteasome system and p62/SQSTM1. In vivo experiments using B16-F10 melanoma tumor cells indicated that depletion of beclin1 resulted in an inhibition of B16-F10 tumor growth and increased tumor apoptosis. Moreover, in vivo inhibition of autophagy by hydroxychloroquine in B16-F10 tumor-bearing mice and mice vaccinated with tyrosinase-related protein-2 peptide dramatically increased tumor growth inhibition. Collectively, this study establishes a novel functional link between hypoxia-induced autophagy and the regulation of antigen-specific T-cell lysis and points to a major role of autophagy in the control of in vivo tumor growth.
Resumo:
A new type of high avidity binding molecule, termed "peptabody" was created by harnessing the effect of multivalent interaction. A short peptide ligand was fused via a semi-rigid hinge region with the coiled-coil assembly domain of the cartilage oligomeric matrix protein, resulting in a pentameric multivalent binding molecule. In the first peptabody (Pab-S) described here, a peptide (S) specific for the mouse B-cell lymphoma BCL1 surface Ig idiotype, was selected from a phage display library. A fusion gene was constructed encoding peptide S, followed by the 24 aa hinge region from camel IgG and a modified 55 aa cartilage oligomeric matrix protein pentamerization domain. The Pab-S fusion protein was expressed in Escherichia coli in a soluble form at high levels and purified in a single step by metal-affinity chromatography. Pab-S specifically bound the BCL1 surface idiotype with an avidity of about 1 nM, which corresponds to a 2 x 10(5)-fold increase compared with the affinity of the synthetic peptide S itself. Biochemical characterization showed that Pab-S is a stable homopentamer of about 85 kDa, with interchain disulfide bonds. Pab-S can be dissociated under denaturing and reducing conditions and reassociated as a pentamer with full-binding activity. This intrinsic feature provides an easy way to combine Pab molecules with two different peptide specificities, thus producing heteropentamers with bispecific and/or chelating properties.
Resumo:
Despite advances in the medical and surgical treatment of Head and Neck (HN) squamous cell carcinoma (HNSCC), long term survival has remained unchanged in the last 20 years. The obvious limitations of traditional therapeutic options strongly urge the development of novel therapeutic approaches. The molecular cloning of tumor antigens recognized by T lymphocytes in recent years has provided targets for specific immunotherapy. In this regard, frequent expression of Cancer Testis Antigens (CTA) has been repeatedly observed among HN tumors. We analyzed CTA expression in 46 HNSCC patients and found that MAGE-A3 and/or -A4 CTA were positive in over 70% of samples, regardless of the anatomical site of primary tumors in the upper aerodigestive tract. Still, immune responses against these CTA in HNSCC patients have not yet been investigated in detail. In this study we assessed the responsiveness of HNSCC patient's lymphocytes against overlapping peptides spanning the entire MAGE-A3 and -A4 proteins. After depletion of CD4+CD25+ regulatory T cells, and following three rounds of in vitro stimulation with pools of overlapping peptides, peripheral blood mononuclear cells (PBMCs) of HNSCC patients were screened by IFN-g and TNF-a intracellular cytokine staining for reactivity against MAGE-A3 or -A4 derived peptides. Cytokine secreting CD4+ T cells, specific for several peptides, were detected in 7/7 patients. In contrast, only 2/5 PBMC from healthy donors showed weak T cell responses against 2 peptides. CD4+ T cells specific for one epitope MAGE-A3(281-295), previously described as an HLA-DR11 restricted epitope naturally processed and presented by dendritic cells and tumor cells, were detected in two patients. MAGE-A3(161-175) specific CD4+ T cells were found in one patient. Six MAGE-A3 and -A4 new epitopes are being characterized. Together, these data suggest that naturally acquired CD4+ T cell responses against CT antigens occur in vivo in HNSCC patients, providing a rational basis for the use of the identified peptides in vaccination protocols.
Resumo:
SUMMARYAs a result of evolution, humans are equipped with an intricate but very effective immune system with multiple defense mechanisms primarily providing protection from infections. This system comprises various cell types, including T-lymphocytes, which are able to recognize and directly kill infected cells. T-cells are not only able to recognize cells carrying foreign antigens, such as virus-infected cells, but also autologous cells. In autoimmune diseases, e.g. multiple sclerosis, T- cells attack autologous cells and cause the destruction of healthy tissue. To prevent aberrant immune reactions, but also to prevent damage caused by an overreacting immune response against foreign targets, there are multiple systems in place that attenuate T-cell responses.By contrast, anti-self immune responses may be highly welcome in malignant diseases. It has been demonstrated that activated T-cells are able to recognize and lyse tumor cells, and may even lead to successful cure of cancer patients. Through vaccination, and especially with the help of powerful adjuvants, frequencies of tumor-reactive T-cells can be augmented drastically. However, the efficacy of anti-tumor responses is diminished by the same checks and balances preventing the human body from harm induced by overly activated T-cells in infections.In the context of my thesis, we studied spontaneous and vaccination induced T-cell responses in melanoma patients. The aim of my studies was to identify situations of T-cell suppression, and pinpoint immune suppressive mechanisms triggered by malignant diseases. We applied recently developed techniques such as multiparameter flow cytometry and gene arrays, allowing the characterization of tumor-reactive T-cells directly ex vivo. In our project, we determined functional capabilities, protein expression, and gene expression profiles of small numbers of T- cells from metastatic tissue and blood obtained from healthy donors and melanoma patients. We found evidence that tumor-specific T-cells were functionally efficient effector cells in peripheral blood, but severely exhausted in metastatic tissue. Our molecular screening revealed the upregulation of multiple inhibitory receptors on tumor-specific T-cells, likely implied in T-cell exhaustion. Functional attenuation of tumor-specific T-cells via inhibitory receptors depended on the anatomical location and immune suppressive mechanisms in the tumor microenvironment, which appeared more important than self-tolerance and anergy mechanisms. Our data reveal novel potential targets for cancer therapy, and contribute to the understanding of cancer biology.RÉSUMÉAu cours de l'évolution, les êtres humains se sont vus doter d'un système immunitaire complexe mais très efficace, avec de multiples mécanismes de défense, principalement contre les infections. Ce système comprend différents types de cellules, dont les lymphocytes Τ qui sont capables de reconnaître et de tuer directement des cellules infectées. Les cellules Τ reconnaissent non seulement des cellules infectées par des virus, mais également des cellules autologues. Dans le cas de maladies auto-immunes, comme par exemple la sclérose en plaques, les cellules Τ s'attaquent à des cellules autologues, ce qui engendre la destruction des tissus sains. Il existe plusieurs systèmes de contrôle des réponses Τ afin de minimiser les réactions immunitaires aberrantes et d'empêcher les dégâts causés par une réponse immunitaire trop importante contre une cible étrangère.Dans le cas de maladies malignes en revanche, une réponse auto-immune peut être avantageuse. Il a été démontré que les lymphocytes Τ étaient également capables de reconnaître et de tuer des cellules tumorales, pouvant même mener à la guérison d'un patient cancéreux. La vaccination peut augmenter fortement la fréquence des cellules Τ réagissant contre une tumeur, particulièrement si elle est combinée avec des adjuvants puissants. Cependant, l'efficacité d'une réponse antitumorale est atténuée par ces mêmes mécanismes de contrôle qui protègent le corps humain des dégâts causés par des cellules Τ activées trop fortement pendant une infection.Dans le cadre de ma recherche de thèse, nous avons étudié les réponses Τ spontanées et induites par la vaccination dans des patients atteints du mélanome. Le but était d'identifier des conditions dans lesquelles les réponses des cellules Τ seraient atténuées, voire inhibées, et d'élucider les mécanismes de suppression immunitaire engendrés par le cancer. Par le biais de techniques nouvelles comprenant la cryométrie de flux et l'analyse globale de l'expression génique à partir d'un nombre minimal de cellules, il nous fut possible de caractériser des cellules Τ réactives contre des tumeurs directement ex vivo. Nous avons examiné les profiles d'expression de gènes et de protéines, ainsi que les capacités fonctionnelles des cellules Τ isolées à partir de tissus métastatiques et à partir du sang de patients. Nos résultats indiquent que les cellules Τ spécifiques aux antigènes tumoraux sont fonctionnelles dans le sang, mais qu'elles sont épuisées dans les tissus métastatiques. Nous avons découvert dans les cellules Τ antitumorales une augmentation de l'expression des récepteurs inhibiteurs probablement impliqués dans l'épuisement de ces lymphocytes T. Cette expression particulière de récepteurs inhibiteurs dépendrait donc de leur localisation anatomique et des mécanismes de suppression existant dans l'environnement immédiat de la tumeur. Nos données révèlent ainsi de nouvelles cibles potentielles pour l'immunothérapie du cancer et contribuent à la compréhension biologique du cancer.