295 resultados para Chromosomal rearrangement
Regulation of the vitellogenin gene B1 promoter after transfer into hepatocytes in primary cultures.
Resumo:
The estrogen-dependent and tissue-specific regulation of the Xenopus laevis vitellogenin gene B1 promoter has been studied by lipid-mediated DNA transfer into Xenopus hepatocytes in primary culture. Hepatocytes achieve an efficient hormonal control of this promoter through a functional interaction between the estrogen responsive elements and a promoter proximal region upstream of the TATA box, which is characterized by a high density of binding sites for the transcription factors CTF/NF-1, C/EBP and HNF3. DNA accessibility to restriction enzymes within the chromosomal copy of the vitellogenin gene B1 promoter shows that the estrogen responsive unit and the promoter proximal region are sensitive to digestion in uninduced and estrogen-induced hepatocytes but not in erythrocyte nuclei. Together, these findings support the notion that chromatin configuration as well as the interplay of promoter elements mediate proper hormone-dependent and tissue-specific expression of the B1 vitellogenin gene.
Resumo:
In 2004, a 56-year-old woman was diagnosed with Stage IA follicular lymphoma in a cervical lymph node biopsy. The patient experienced total remission after local radiation therapy. In 2009, a control computed tomography scan evidenced a pelvic mass, prompting total hysterectomy. The latter harbored a 4.8-cm intramural uterine tumor corresponding to a mostly diffuse and focally nodular proliferation of medium to large cells, with extensive, periodic acid-Schiff negative, signet ring cell changes, and a pan-keratin negative, CD20+, CD10+, Bcl2+, Bcl6+ immunophenotype. Molecular genetic studies showed the same clonal IGH gene rearrangement in the lymph node and the uterus, establishing the uterine tumor as a relapse of the preceding follicular lymphoma, although no signet ring cells were evidenced at presentation. Uterine localization of lymphomas is rare, and lymphomas with signet ring cell features are uncommon. This exceptional case exemplifies a diagnostically challenging situation and expands the differential diagnosis of uterine neoplasms displaying signet ring cell morphology.
Resumo:
Ultrasound scans in the mid trimester of pregnancy are now a routine part of antenatal care in most European countries. With the assistance of Registries of Congenital Anomalies a study was undertaken in Europe. The objective of the study was to evaluate prenatal detection of congenital heart defects (CHD) by routine ultrasonographic examination of the fetus. All congenital malformations suspected prenatally and all congenital malformations, including chromosome anomalies, confirmed at birth were identified from the Congenital Malformation Registers, including 20 registers from the following European countries: Austria, Croatia, Denmark, France, Germany, Italy, Lithuania, Spain, Switzerland, The Netherlands, UK and Ukrainia. These registries follow the same methodology. The study period was 1996-1998, 709 030 births were covered, and 8126 cases with congenital malformations were registered. If more than one cardiac malformation was present the case was coded as complex cardiac malformation. CHD were subdivided into 'isolated' when only a cardiac malformation was present and 'associated' when at least one other major extra cardiac malformation was present. The associated CHD were subdivided into chromosomal, syndromic non-chromosomal and multiple. The study comprised 761 associated CHD including 282 cases with multiple malformations, 375 cases with chromosomal anomalies and 104 cases with non-chromosomal syndromes. The proportion of prenatal diagnosis of associated CHD varied in relation to the ultrasound screening policies from 17.9% in countries without routine screening (The Netherlands and Denmark) to 46.0% in countries with only one routine fetal scan and 55.6% in countries with two or three routine fetal scans. The prenatal detection rate of chromosomal anomalies was 40.3% (151/375 cases). This rate for recognized syndromes and multiply malformed with CHD was 51.9% (54/104 cases) and 48.6% (137/282 cases), respectively; 150/229 Down syndrome (65.8%) were livebirths. Concerning the syndromic cases, the detection rate of deletion 22q11, situs anomalies and VATER association was 44.4%, 64.7% and 46.6%, respectively. In conclusion, the present study shows large regional variations in the prenatal detection rate of CHD with the highest rates in European regions with three screening scans. Prenatal diagnosis of CHD is significantly higher if associated malformations are present. Cardiac defects affecting the size of the ventricles have the highest detection rate. Mean gestational age at discovery was 20-24 weeks for the majority of associated cardiac defects.
Resumo:
RESUME POUR UN LARGE PUBLIC Parmi les globules blancs, les lymphocytes T 004 jouent un rôle primordial dans la coordination de la réponse immunitaire contre les pathogènes et les lymphocytes T CD8 dans leur élimination. Lors d'une infection par le virus de l'immunodéficience humaine (VIH-1), non seulement les cellules T CD4 sont les principales cibles d'infections, mais aussi elles disparaissent progressivement tout au long de la maladie. Ce phénomène, appelé aussi épuisement des lymphocytes T CD4, est la principale cause provoquant le Syndrome d'Immunodéficience Acquise (SIDA). Malgré de grands efforts de recherche, nous ne sommes toujours pas en mesure de dire si ce phénomène est dû à un défaut dans la production de nouvelles cellules ou à une destruction massive de cellules en circulation. Dans cette étude, nous nous proposions, dans un premier temps, de comparer la production de nouvelles cellules T CD4 et CD8 chez des individus VIH-négatifs et positifs. Les cellules nouvellement produites portent un marqueur commun que l'on appelle TREC et qui est facilement mesurable. En considérant des paramètres cliniques, nous étions en mesure de déterminer le niveau de TRECs de cellules T CD4 et CD8 dans différentes phases de la maladie. De là, nous avons pu déterminer que le niveau de TREC est toujours plus bas dans les cellules T CD8 de patients VIH-positifs comparativement à notre groupe contrôle. Nous avons pu déterminer par une analyse ultérieure que cette différence est due à une forte prolifération de ces cellules chez les patients VIH-positifs, ce qui a pour effet de diluer ce marqueur. En revanche, la production de nouvelles cellules T CD4 chez des patients VIH-positifs est accentuée lors de la phase précoce de la maladie et largement réprimée lors de la phase tardive. Dans un second temps, nous avons effectué une analyse à grande échelle de l'expression de gènes associés à la division cellulaire sur des lymphocytes T CD4 et CD8 d'individus VIH-¬positifs et négatifs, avec comme contrôle des cellules proliférant in vitro. De cette étude, nous avons pu conclure que les cellules T CD8 de patients VIH-positifs étaient en état de prolifération, alors que les lymphocytes T CD4 présentaient des défauts majeurs conduisant à un arrêt de la division cellulaire. Nos résultats montrent que la capacité à produire de nouvelles cellules chez des patients VIH¬positifs reste active longtemps pendant la maladie, mais que l'incapacité des cellules T CD4 à proliférer peut enrayer la reconstitution immunitaire chez ces individus. ABSTRACT The hallmark of HIV-1 infection is the depletion of CD4 T cells. Despite extensive investigation, the mechanisms responsible for the loss of CD4 T cells have been elucidated only partially. In particular, it remains controversial whether CD4 T cell depletion results from a defect in T cell production or from a massive peripheral destruction. In this study, de novo T cell generation has been investigated by measuring T cell receptor rearrangement excision circles (TRECs) on large cohorts of HIV-negative (N=120) and HIV-1 infected (N=298) individuals. Analysis of TREC levels was performed in HIV-infected subjects stratified by the stage of HIV disease based on CD4 T cell counts (early: >500 CD4 T cells/µl; intermediate: <500>200; late: <200) and by age (20 to 60 years, n = 259). Our data show that TREC levels in CD8 T cells were significantly lower in HIV-infected subjects at any stage of disease compared to the control group. In contrast, TREC levels in CD4 T cells were significantly higher in HIV-infected subjects at early stages disease while no significant differences were observed at intermediate stages of the disease and were severely reduced only at late stages of disease. To investigate further the status of cell cycle in peripheral CD4 and CD8 T cells in HIV-1 infections, we determined the pattern of gene expression with the microarray technology. In particular, CD4 and CD8 T cells of HIV-1 infected and HIV-negative subjects were analysed by Cell Cycle cDNA expression array. The patterns of gene expression were compared to in vitro stimulated CD4 and CD8 T cells and this analysis showed that CD8 T cells of HIV-1 infected subjects had a pattern of gene expression very similar to that of in vitro stimulated CD8 T cells thus indicating ongoing cell cycling. In contrast, CD4 T cells of HIV-1 infected subjects displayed a complex pattern of gene expression. In fact, CD4 T cells expressed high levels of genes typically associated with cell activation, but low levels of cell cycle genes. Therefore, these results indicated that activated CD4 T cells of HIV-1 infected subjects were in cell cycle arrest. Taking together these results indicate that thymus function is preserved for long time during HIV- 1 infection and the increase observed in early stage disease may represent a compensatory mechanism to the depletion of CD4 T cells. However, we provide evidence for a cell cycle arrest of peripheral CD4 T cells that may prevent potentially the replenishment of CD4 T cells. RESUME Les mécanismes responsables de la perte des lymphocytes T CD4 lors de l'infection pas VIH n'ont été élucidés que partiellement. Nous ne savons toujours pas si l'épuisement des lymphocytes T CD4 résulte d'un défaut dans la production de cellules ou d'une destruction périphérique massive. Dans cette étude, la production de cellules T a été étudiée en mesurant les cercles d'excision générés lors du réarrangement du récepteur au cellules T (TRECs) chez des individus VIH-négatifs (N=120) et VIH-1 positifs (N=298). L'analyse des niveaux de TREC a été faite chez sujets HIV-infectés en considérant les phases de la maladie sur la base des comptes CD4 (phase précoce: > 500 cellules CD4/µl; intermédiaire: < 500>200; tardive: < 200) et par âge. Nos données démontrent que les niveaux de TRECs des cellules T CD8 étaient significativement plus bas chez les sujets VIH-1 infectés, à tous les stades de la maladie comparativement au groupe contrôle. En revanche, les niveaux de TRECs des cellules T CD4 étaient significativement plus élevés chez les sujets VIH-1 infectés durant la phase précoce de la maladie, tandis qu'aucune différence significative n'était observée durant la phase intermédiaire et étaient très réduits dans la phase tardive. Dans une deuxième partie, nous avons utilisé la technique des biopuces à d'ADN complémentaire pour analyser la régulation du cycle cellulaire chez les lymphocytes T CD4 et CD8 périphériques lors d'une infection au VIH-1. Des profils d'expression ont été déterminés et comparés à ceux de cellules T CD4 et CD8 stimulées in vitro, démontrant que les cellules T CD8 des sujets VIH-positifs avaient un profil d'expression très semblable à celui des cellules stimulées in vitro en prolifération. En revanche, les lymphocytes T CD4 des sujets VIH-1 positifs avaient un profil d'expression de gène plus complexe. En fait, leur profil montrait une sur- expression de gènes associés à une activation cellulaire, mais une sous-expression de ceux induisant une division. Ainsi, ces résultats indiquent que les lymphocytes T CD4 d'individus VIH-positifs présentent des dérégulations qui conduisent à un arrêt du cycle cellulaire. Ces résultats montrent que la fonction thymique est préservée longtemps pendant l'infection au VIH-1 et que l'augmentation de la quantité de TRECs dans la phase précoce de la maladie peut représenter un mécanisme compensatoire à l'épuisement des cellules T CD4. Cependant, nous démontrons aussi un clair dysfonctionnement du cycle cellulaire chez les cellules T CD4 d'individus infectés par VIH-1 ce qui peut enrayer la reconstitution du système immunitaire.
Resumo:
Background: Pediatric follicular lymphoma (FL) is a rare disease that differs from its adult counterpart both genetically and clinically. Excluding pediatric FL with IRF4-translocation, the genetic events associated with pediatric FL have not yet been defined. Objectives: The aim of this study was to perform a complete genetic characterization of IRF4-translocation negative pediatric follicular lymphomas to elucidate the genetic profile of these rare pediatric cases and determine common genetic alterations that could be associated to this phenotype. Design/Methods: We applied array-comparative genomic hybridization and molecular inversion probe assay adapted to formalin-fixed paraffin-embedded tissues from 18 patients aged £18 years diagnosed with FL. With the exception of one case with only focal involvement by lymphoma, the tumor cell content exceeded 50% in the evaluable samples. Eleven of 18 patients were treated according to NHL-BFM group multicenter trials whereas the remaining according to different protocols. All lacked t(14;18) translocation. Mutational analysis of TNFRSF14 gene was performed in 17 cases. Results: Only six pediatric cases displayed chromosomal imbalances, with gain/amplification of 6pter-p24.3 (including IRF4) and deletion/ copy number neutral-loss of heterozygosity in 1p36 (including TNFRSF14) being the most frequent alterations. Sequencing of the candidate gene TNFRSF14 at 1p36.32 showed nine mutations in seven cases. Conclusion: Combination of molecular and genetic features differentiated a recurrent pattern of genomic imbalances as well as of TNFRSF14 mutations in pediatric FL which together with other genetic alterations distinguishes two subsets of pediatric follicular lymphomas. The first group shows genomic aberrations and is associated with more aggressive histopathologic and clinical features. The second group lacks genetic alterations detectable with the present approaches and is associated with a more limited disease. Despite the absence of genomic aberrations, these cases resembled FL by their histopathological features.
Resumo:
Copy number variants (CNVs) are major contributors to genetic disorders. We have dissected a region of the 16p11.2 chromosome--which encompasses 29 genes--that confers susceptibility to neurocognitive defects when deleted or duplicated. Overexpression of each human transcript in zebrafish embryos identified KCTD13 as the sole message capable of inducing the microcephaly phenotype associated with the 16p11.2 duplication, whereas suppression of the same locus yielded the macrocephalic phenotype associated with the 16p11.2 deletion, capturing the mirror phenotypes of humans. Analyses of zebrafish and mouse embryos suggest that microcephaly is caused by decreased proliferation of neuronal progenitors with concomitant increase in apoptosis in the developing brain, whereas macrocephaly arises by increased proliferation and no changes in apoptosis. A role for KCTD13 dosage changes is consistent with autism in both a recently reported family with a reduced 16p11.2 deletion and a subject reported here with a complex 16p11.2 rearrangement involving de novo structural alteration of KCTD13. Our data suggest that KCTD13 is a major driver for the neurodevelopmental phenotypes associated with the 16p11.2 CNV, reinforce the idea that one or a small number of transcripts within a CNV can underpin clinical phenotypes, and offer an efficient route to identifying dosage-sensitive loci.
Resumo:
We studied 5,449 cases of cleft lip (CL) with or without cleft palate (CL/P) identified between 1980 and 2000 from the EUROCAT network of 23 registers (nearly 6 million births) in 14 European countries. We investigated specific types of defects associated with clefts. Among CL/P cases (prevalence = 9.1 per 10,000), 1,996 (36.6%) affected only the lip (CL) and 3,453 (63.4%) involved CL and palate (CLP). A total of 3,860 CL/P cases (70.8%) occurred as isolated anomalies and 1,589 (29.2%) were associated with other defects such as multiple congenital anomalies of unknown origin (970), chromosomal (455) and recognized syndromes (164). Associated malformations were more frequent in infants who had CLP (34.0%) than in infants with CL only (20.8%). Among multi-malformed infants, 2 unrelated anomalies were found in 351 cases, 3 in 242 cases, and 4 or more in 377 cases. Among 5,449 CL/P cases, 4,719 were live births (LB) (86.6%), 203 stillbirths (SB) (3.7%), while 508 (9.3%) were terminations of pregnancy (ToP). CL/P occurred significantly more frequently in males (M/F = 1.70), especially among total isolated cases (M/F = 1.87) and CLP isolated cases (M/F = 1.92). The study confirmed that musculoskeletal, cardiovascular, and central nervous system defects are frequently associated with CL/P. An association with reduction anomalies of the brain was found. This association suggests that clinicians should seek to identify structural brain anomalies in these patients with CL/P as the potential functional consequences may be important for rehabilitation and clinical management.
Resumo:
Microphthalmia with linear skin defects (MLS) syndrome is an X-linked male-lethal disorder also known as MIDAS (microphthalmia, dermal aplasia, and sclerocornea). Additional clinical features include neurological and cardiac abnormalities. MLS syndrome is genetically heterogeneous given that heterozygous mutations in HCCS or COX7B have been identified in MLS-affected females. Both genes encode proteins involved in the structure and function of complexes III and IV, which form the terminal segment of the mitochondrial respiratory chain (MRC). However, not all individuals with MLS syndrome carry a mutation in either HCCS or COX7B. The majority of MLS-affected females have severe skewing of X chromosome inactivation, suggesting that mutations in HCCS, COX7B, and other as-yet-unidentified X-linked gene(s) cause selective loss of cells in which the mutated X chromosome is active. By applying whole-exome sequencing and filtering for X-chromosomal variants, we identified a de novo nonsense mutation in NDUFB11 (Xp11.23) in one female individual and a heterozygous 1-bp deletion in a second individual, her asymptomatic mother, and an affected aborted fetus of the subject's mother. NDUFB11 encodes one of 30 poorly characterized supernumerary subunits of NADH:ubiquinone oxidoreductase, known as complex I (cI), the first and largest enzyme of the MRC. By shRNA-mediated NDUFB11 knockdown in HeLa cells, we demonstrate that NDUFB11 is essential for cI assembly and activity as well as cell growth and survival. These results demonstrate that X-linked genetic defects leading to the complete inactivation of complex I, III, or IV underlie MLS syndrome. Our data reveal an unexpected role of cI dysfunction in a developmental phenotype, further underscoring the existence of a group of mitochondrial diseases associated with neurocutaneous manifestations.
Resumo:
Chromosomal inversion polymorphisms are common in animals and plants, and recent models suggest that alternative arrangements spread by capturing different combinations of alleles acting additively or epistatically to favour local adaptation. It is also thought that inversions typically maintain favoured combinations for a long time by suppressing recombination between alternative chromosomal arrangements. Here, we consider patterns of linkage disequilibrium and genetic divergence in an old inversion polymorphism in Drosophila melanogaster (In(3R)Payne) known to be associated with climate change adaptation and a recent invasion event into Australia. We extracted, karyotyped and sequenced whole chromosomes from two Australian populations, so that changes in the arrangement of the alleles between geographically separated tropical and temperate areas could be compared. Chromosome-wide linkage disequilibrium (LD) analysis revealed strong LD within the region spanned by In(3R)Payne. This genomic region also showed strong differentiation between the tropical and the temperate populations, but no differentiation between different karyotypes from the same population, after controlling for chromosomal arrangement. Patterns of differentiation across the chromosome arm and in gene ontologies were enhanced by the presence of the inversion. These data support the notion that inversions are strongly selected by bringing together combinations of genes, but it is still not clear if such combinations act additively or epistatically. Our data suggest that climatic adaptation through inversions can be dynamic, reflecting changes in the relative abundance of different forms of an inversion and ongoing evolution of allelic content within an inversion.
Resumo:
This multicenter, observational prospective cohort study addresses the risk associated with exposure to mirtazapine during pregnancy. Pregnancy outcomes after exposure to mirtazapine were compared with 2 matched control groups: (1) exposure to any selective serotonin reuptake inhibitor (SSRI, control subjects with a psychiatric condition) and (2) no exposure to medication known to be teratogenic or any antidepressant (general control subjects). Data were collected by members of the European Network of Teratology Information Services between 1995 and 2011. Observations from 357 exposed pregnancies were compared with 357 pregnancies from each control group. The rate of major birth defects between the mirtazapine and the SSRI group did not differ significantly (4.5% vs 4.2%; odds ratio [OR], 1.1; 95% confidence interval [95% CI], 0.5-2.3; P = 0.9). A trend toward a higher rate of birth defects in the mirtazapine group compared with general control subjects (4.5% vs 1.9%; OR, 2.4; 95% CI, 0.9-6.3; P = 0.08) reached statistical significance after exclusion of chromosomal or genetic anomalies (4.1% vs 1.3%; OR, 3.3; 95% CI, 1.04-10.3; P = 0.03), but this difference became again nonsignificant if cases of exposure not comprising the first trimester were excluded from the analysis (3.4% vs 1.9%; OR, 1.8; 95% CI, 0.6-5.0; P = 0.26). The crude miscarriage rate did not differ significantly between the mirtazapine, the SSRI, and the general control groups (12.1% vs 12.0% vs 9.3%; P = 0.44). However, a higher rate of elective pregnancy termination was observed in the mirtazapine group compared with SSRI and general control subjects (7.8% vs 3.4% vs 5.6%; P = 0.03). This study did not observe a statistically significant difference in the rate of major birth defects after first-trimester exposure between mirtazapine, SSRI-exposed, and nonexposed pregnancies. A marginally higher rate of birth defects was, however, observed in the mirtazapine and SSRI groups compared with the low rate of birth defects in our general control subjects. Overall pregnancy outcome after mirtazapine exposure was similar to that of the SSRI-exposed control group.
Resumo:
To characterise the genetics of splenic marginal zone lymphoma (SMZL), we performed whole exome sequencing of 16 cases and identified novel recurrent inactivating mutations in Kruppel-like factor 2 (KLF2), a gene whose deficiency was previously shown to cause splenic marginal zone hyperplasia in mice. KLF2 mutation was found in 40 (42%) of 96 SMZLs, but rarely in other B-cell lymphomas. The majority of KLF2 mutations were frameshift indels or nonsense changes, with missense mutations clustered in the C-terminal zinc finger domains. Functional assays showed that these mutations inactivated the ability of KLF2 to suppress NF-κB activation by TLR, BCR, BAFFR and TNFR signalling. Further extensive investigations revealed common and distinct genetic changes between SMZL with and without KLF2 mutation. IGHV1-2 rearrangement and 7q deletion were primarily seen in SMZL with KLF2 mutation, while MYD88 and TP53 mutations were nearly exclusively found in those without KLF2 mutation. NOTCH2, TRAF3, TNFAIP3 and CARD11 mutations were observed in SMZL both with and without KLF2 mutation. Taken together, KLF2 mutation is the most common genetic change in SMZL and identifies a subset with a distinct genotype characterised by multi-genetic changes. These different genetic changes may deregulate various signalling pathways and generate cooperative oncogenic properties, thereby contributing to lymphomagenesis.
Resumo:
Congenital heart defect (CHD) has a major influence on affected individuals as well as on the supportive and associated environment such as the immediate family. Unfortunately, CHD is common worldwide with an incidence of approximately 1% and consequently is a major health concern. The Arab population has a high rate of consanguinity, fertility, birth, and annual population growth, in addition to a high incidence of diabetes mellitus and obesity. All these factors may lead to a higher incidence and prevalence of CHD within the Arab population than in the rest of the world, making CHD of even greater concern. Sadly, most Arab countries lack appropriate public health measures directed toward the control and prevention of congenital malformations and so the importance of CHD within the population remains unknown but is thought to be high. In approximately 85% of CHD patients, the multifactorial theory is considered as the pathologic basis. The genetic risk factors for CHD can be attributed to large chromosomal aberrations, copy number variations (CNV) of particular regions in the chromosome, and gene mutations in specific nuclear transcription pathways and in the genes that are involved in cardiac structure and development. The application of modern molecular biology techniques such as high-throughput nucleotide sequencing and chromosomal array and methylation array all have the potential to reveal more genetic defects linked to CHD. Exploring the genetic defects in CHD pathology will improve our knowledge and understanding about the diverse pathways involved and also about the progression of this disease. Ultimately, this will link to more efficient genetic diagnosis and development of novel preventive therapeutic strategies, as well as gene-targeted clinical management. This review summarizes our current understanding of the molecular basis of normal heart development and the pathophysiology of a wide range of CHD. The risk factors that might account for the high prevalence of CHD within the Arab population and the measures required to be undertaken for conducting research into CHD in Arab countries will also be discussed.
Resumo:
Glioblastoma (GBM) is the most common and most aggressive malignant primary brain tumour. Despite the aggressiveness of the applied therapy, the prognosis remains poor with a median survival to of about 15 months. It is important to identify new candidate genes that could have clinical application in this disease. Previous gene expression studies from human GBM samples in our laboratory, revealed Ubiquitin Specific Peptidase 15 (USP15) as a gene with low expression, significantly associated with genomic deletions of the chromosomal region encompassing the USP15 locus. USP15 belongs to the ubiquitin-specific protease (USPs) family of which the main role is the reversion of ubiquitination and thereby stabilization of substrates. Previously, USP15 has been suggested to have a tumour suppressor function via its substrates APC and Caspase 3. We established GBM cell lines that stably express USP15 wt or its catalytic mutant. USP15 expression impairs cell growth by inhibiting cell cycle progression. On the other hand USP15 depletion in GBM cell lines induces cell cycle progression and proliferation. In order to identify the molecular pathways in which USP15 is implicated we aimed to identify protein-binding partners in the GBM cell line LN-229 by Mass spectrometry. As a result we identified eight new proteins that interact with USP15. These proteins are involved in important cellular processes like cytokinesis, cell cycle, cellular migration, and apoptosis. Three of these protein interactions were confirmed by co-immunoprecipitation in four GBM cell lines LN-229, LN428, LN18, LN-Z308. One of the binding proteins is HECTD1 E3 ligase of which the murine homologue promotes the APC-Axin interaction to negatively regulate the Wnt pathway. USP15 can de-ubiquitinate HECTD1 in the LN229 cell line while its depletion led to decrease of HECTD1 in GBM cell lines suggesting stabilizing role for USP15. Moreover, HECTD1 stable expression in LN229 inhibits cell cycle, while its depletion induces cell cycle progression. These results suggest that the USP15-HECTD1 interaction might enhance the antiproliferative effect of HECTD1 in GBM cell lines. Using the TOPflash/FOPflash luciferase system we showed that HECTD1 and USP15 overexpression can attenuate WNT pathway activity, and decrease the Axin2 expression. These data indicate that this new protein interaction of USP15 with HECTD1 results in negative regulation of the WNT pathway in GBM cell lines. Further investigation of the regulation of this interaction or of the protein binding network of HECTD1 in GBM may allow the discovery of new therapeutic targets. Finally PTPIP51 and KIF15 are the other two identified protein partners of USP15. These two proteins are involved in cell proliferation and their depletion in LN-229 cell line led to induction of cell cycle progression. USP15 displays a stabilizing role for them. Hence, these results show that the tumour suppressive role of USP15 in GBM cell line via different molecular mechanisms indicating the multidimensional function of USP15. Résumé Le glioblastome (GBM) est la tumeur primaire la plus fréquente et la plus agressive du cervau caractérisée par une survie médiane d'environ à 15 mois. De précédant travaux effectués au sein de notre laboratoire portant sur l'étude de l'expression de gènes pour des échantillons humains de GBM ont montré que le gène Ubiquitin Specific Peptidase 15 (USP1S) était significativement associée à une délétion locales à 25% des cas. Initialement, les substrats protéiques APC et CaspaseS de USP15 ont conduit à considérer cette protéine comme un suppresseur de tumeur. USP15 appartient à la famille protèsse spécifique de l'ubiquitine (USPs) dont le rôle principal est la réversion de l'ubiquitination et la stabilisation de substrats. Par conséquent, nous avons établi des lignées de cellules de glioblastome qui expriment de manière stable USP15 ou bien son mutant catalytique. Ainsi, nous avons ainsi démontré que l'expression de l'USP15 empêche la croissance cellulaire en inhibant la progression du cycle cellulaire. Inversement, la suppression de l'expression du gène USP15 dans les lignées cellulaires de glioblastome induit la progression du cycle cellulaire et la prolifération. Afin d'identifier les voies moléculaires dans lesquelles sont impliquées USP15, nous avons cherché à identifier les partenaires de liaisons protéiques par spectrométrie de masse dans la lignée cellulaire LN-229. Ainsi, huit nouvelles protéines interagissant avec USP15 ont été identifiées dont la ligase E3 HECTD1. L'homologue murin de Hectdl favorise l'interaction APC-Axin en régulant négativement la voie de signalisation de Wnt. USP15 interagit en désubiquitinant HECTD1 dans la lignée cellulaire LN-229 et provoque ainsi l'atténuation de l'activité de cette voie de signalisation. En conclusion, HECTD1, en interagissant avec USP15, joue un rôle de suppresseur de tumeur dans les lignées cellulaire de GBM.
Resumo:
Arthropods exhibit a large variety of sex determination systems both at the chromosomal and molecular level. Male heterogamety, female heterogamety, and haplodiploidy occur frequently, but partially different genes are involved. Endosymbionts, such as Wolbachia, Cardinium,Rickettsia, and Spiroplasma, can manipulate host reproduction and sex determination. Four major reproductive manipulation types are distinguished: cytoplasmic incompatibility, thelytokous parthenogenesis, male killing, and feminization. In this review, the effects of these manipulation types and how they interfere with arthropod sex determination in terms of host developmental timing, alteration of sex determination, and modification of sexual differentiation pathways are summarized. Transitions between different manipulation types occur frequently which suggests that they are based on similar molecular processes. It is also discussed how mechanisms of reproductive manipulation and host sex determination can be informative on each other, with a special focus on haplodiploidy. Future directions on how the study of endosymbiotic manipulation of host reproduction can be key to further studies of arthropod sex determination are shown.
Resumo:
Chromatin state variation at gene regulatory elements is abundant across individuals, yet we understand little about the genetic basis of this variability. Here, we profiled several histone modifications, the transcription factor (TF) PU.1, RNA polymerase II, and gene expression in lymphoblastoid cell lines from 47 whole-genome sequenced individuals. We observed that distinct cis-regulatory elements exhibit coordinated chromatin variation across individuals in the form of variable chromatin modules (VCMs) at sub-Mb scale. VCMs were associated with thousands of genes and preferentially cluster within chromosomal contact domains. We mapped strong proximal and weak, yet more ubiquitous, distal-acting chromatin quantitative trait loci (cQTL) that frequently explain this variation. cQTLs were associated with molecular activity at clusters of cis-regulatory elements and mapped preferentially within TF-bound regions. We propose that local, sequence-independent chromatin variation emerges as a result of genetic perturbations in cooperative interactions between cis-regulatory elements that are located within the same genomic domain.