332 resultados para Carbohydrate-containing antigen
Resumo:
To avoid the exclusive use of rodent monoclonal antibodies (MAbs) in patients for the detection of tumors by immunoscintigraphy and for radioimmunotherapy, swine MAbs were produced that are directed against carcinoembryonic antigen (CEA). Spleen cells from 2 pigs immunized with purified colon carcinoma CEA were fused with a nonsecreting mouse myeloma cell line by conventional methods, except that a particularly long immunization protocol and large amounts of spleen and myeloma cells were used. Of 1,200 growing hybrids tested, 20 were found initially to produce antibodies binding to radiolabeled CEA. Seven stable clones producing anti-CEA MAbs for more than 6 months were derived from these hybrids by repeated subcloning. The pig origin of the seven MAbs was demonstrated in a solid-phase CEA enzyme immunoassay where anti-pig immunoglobin (Ig) antibodies coupled to peroxidase gave a positive reaction while anti-mouse Ig antibodies were entirely negative. All swine MAbs were of the IgG isotype. Three anti-CEA MAbs showed no cross-reactivity with granulocytes, while four others gave various degrees of reactivity with different granulocyte glycoproteins. Competitive binding to CEA performed for two purified swine MAbs showed that they recognized two different epitopes. The affinity constants measured for these two MAbs by Scatchard plot on purified CEA were high (1.2 X 10(9) and 1.2 X 10(10) liter/mol). One of the MAbs was tested in vivo for tumor localization by injection, after radiolabeling, in nude mice bearing human colon carcinoma xenograft. High ratios of tumor to normal tissue were obtained with mean values of 10.5 for intact MAbs and of 26.8 for F(ab')2 fragments of the porcine MAb. The results showed that heterofusion with this particular protocol can be used to produce swine MAbs of high affinity and specificity for a well-defined tumor marker. These reagents may have an important clinical utility, particularly in patients who became sensitized to mouse immunoglobulins.
Resumo:
OBJECTIVE: To assess the effects, on food intake, body weight and body composition, of compliance to advice aiming at increasing the carbohydrate to fat ratio of the everyday diet without imposing voluntary restriction on the amount of food consumed. DESIGN: Eight moderately overweight women (body mass index > 27 kg/m2, relative body fat mass > 30%) received dietary advice during a 2 month period. Additionally, each evening the subjects had to consume a meal artificially enriched with 13C-glucose in order to assess their compliance from the 13CO2 enrichment in expired air. MEASUREMENTS: Dietary intakes, body weight, body composition and individual compliance. RESULTS: The energy derived from fat decreased from 44 +/- 1% to 31 +/- 1% and the proportion of carbohydrate increased from 38 +/- 2% to 50 +/- 1%, whereas the absolute carbohydrate intake remained constant (182 +/- 18 g/d). Energy intake decreased by 1569 +/- 520 kJ/d. There was a net loss of fat mass (1.7 +/- 0.7 kg, P = 0.016) with fat free mass maintenance. Dietary compliance ranged from 20 to 93% (mean: 60 +/- 8%) and was positively correlated to the loss of body fat mass. CONCLUSION: Advice aiming at increasing diet's carbohydrate to fat ratio induces a loss of fat mass with fat-free mass maintenance.
Resumo:
Passive immunization against β-amyloid (Aβ) has become an increasingly desirable strategy as a therapeutic treatment for Alzheimer's disease (AD). However, traditional passive immunization approaches carry the risk of Fcγ receptor-mediated overactivation of microglial cells, which may contribute to an inappropriate proinflammatory response leading to vasogenic edema and cerebral microhemorrhage. Here, we describe the generation of a humanized anti-Aβ monoclonal antibody of an IgG4 isotype, known as MABT5102A (MABT). An IgG4 subclass was selected to reduce the risk of Fcγ receptor-mediated overactivation of microglia. MABT bound with high affinity to multiple forms of Aβ, protected against Aβ1-42 oligomer-induced cytotoxicity, and increased uptake of neurotoxic Aβ oligomers by microglia. Furthermore, MABT-mediated amyloid plaque removal was demonstrated using in vivo live imaging in hAPP((V717I))/PS1 transgenic mice. When compared with a human IgG1 wild-type subclass, containing the same antigen-binding variable domains and with equal binding to Aβ, MABT showed reduced activation of stress-activated p38MAPK (p38 mitogen-activated protein kinase) in microglia and induced less release of the proinflammatory cytokine TNFα. We propose that a humanized IgG4 anti-Aβ antibody that takes advantage of a unique Aβ binding profile, while also possessing reduced effector function, may provide a safer therapeutic alternative for passive immunotherapy for AD. Data from a phase I clinical trial testing MABT is consistent with this hypothesis, showing no signs of vasogenic edema, even in ApoE4 carriers.
Resumo:
In six young obese women (mean weight 85 +/- 3 kg) with a childhood history of obesity, and in six young nonobese women (mean weight 55 +/- 2 kg), the energy expenditure was measured during 24 h in a respiratory chamber with a maintenance energy intake. The next day, the thermogenic response to a mixed meal was investigated by using an open circuit indirect calorimetry hood system. In addition, five of the same obese women were similarly studied after a mean weight loss of 12.1 kg (14% of initial body weight) consecutive to an 11-wk hypocaloric diet (protein-supplemented modified fast). Expressed in absolute terms, the total 24 h and basal energy expenditures were found to be significantly greater in the obese (2208 +/- 105 and 1661 +/- 56 kcal/24 h, respectively) than in the controls (1746 +/- 61 and 1230 +/- 40 kcal/24 h, respectively). After weight loss, both the total 24-h and the basal energy expenditures were significantly reduced (2009 +/- 99 kcal/24 h and 1423 +/- 43 kcal/24 h respectively), but both values were still greater than that of the control subjects. The thermogenic response to the mixed meal (a liquid diet containing 17, 54, and 29% as protein, carbohydrate, and lipid calories, respectively, and an energy level determined to cover 60% of the basal energy expenditure computed for 24 h) was found to be significantly reduced in the obese as compared to controls (ie, 7.6 +/- 0.4% versus 9.5 +/- 0.4% of the energy content of the load, respectively, p less than 0.025). After weight loss, the postprandial thermogenesis of the obese was still markedly reduced (ie, 6.2 +/- 0.8%). Both before and after weight loss, the relative increase in diurnal urinary norepinephrine excretion was found to be lower in the obese than in controls, when compared to the nocturnal values. These results show that the greater 24 h energy expenditure of obese women is entirely due to their higher basal metabolic rate. The lower thermogenic response to the meal in the obese supports the concept of a thermogenic defect which can favor energy gain; furthermore, the unchanged response after weight loss in the obese suggests that the thermogenic defect may be a cause rather than a consequence of obesity.
Resumo:
Fluorescence-labeled soluble major histocompatibility complex class I-peptide "tetramers" constitute a powerful tool to detect and isolate antigen-specific CD8(+) T cells by flow cytometry. Conventional "tetramers" are prepared by refolding of heavy and light chains with a specific peptide, enzymatic biotinylation at an added C-terminal biotinylation sequence, and "tetramerization" by reaction with phycoerythrin- or allophycocyanin-labeled avidin derivatives. We show here that such preparations are heterogeneous and describe a new procedure that allows the preparation of homogeneous tetra- or octameric major histocompatibility complex-peptide complexes. These compounds were tested on T1 cytotoxic T lymphocytes (CTLs), which recognize the Plasmodium berghei circumsporzoite peptide 252-260 (SYIPSAEKI) containing photoreactive 4-azidobenzoic acid on Lys(259) in the context of H-2K(d). We report that mutation of the CD8 binding site of K(d) greatly impairs the binding of tetrameric but not octameric or multimeric K(d)-PbCS(ABA) complexes to CTLs. This mutation abolishes the ability of the octamer to elicit significant phosphorylation of CD3, intracellular calcium mobilization, and CTL degranulation. Remarkably, however, this octamer efficiently activates CTLs for Fas (CD95)-dependent apoptosis.
Resumo:
Thymocytes and class I major histocompatibility complex (MHC)-restricted cytotoxic T lymphocytes express predominantly heterodimeric alpha/beta CD8. By interacting with non-polymorphic regions of MHC class I molecules CD8 can mediate adhesion or by binding the same MHC molecules that interact with the T-cell antigen receptor (TCR) function as coreceptor in TCR-ligand binding and T-cell activation. Using TCR photoaffinity labelling with a soluble, monomeric photoreactive H-2Kd-peptide derivative complex, we report here that the avidity of TCR-ligand interactions on cloned cytotoxic T cells is very greatly strengthened by CD8. This is primarily explained by coordinate binding of ligand molecules by CD8 and TCR, because substitution of Asp 227 of Kd with Lys severely impaired the TCR-ligand binding on CD8+, but not CD8- cells. Kinetic studies on CD8+ and CD8- cells further showed that CD8 imposes distinct dynamics and a remarkable temperature dependence on TCR-ligand interactions. We propose that the ability of CD8 to act as coreceptor can be modulated by CD8-TCR interactions.
Resumo:
Hybridoma cells have been derived from a fusion between mouse myeloma cells (P3-NSI/1Ag4) and spleen cells from a mouse immunized with membrane-enriched fractions from the human melanoma cell line Me-43. Of the 26 hybrids obtained, seven secreted antibodies which reacted with the melanoma cell line used for immunoassay. The specificity of the antibodies produced by the seven positive hybrids was further investigated on 16 melanoma cell lines, 15 other tumors, and 14 lymphoblastoid cell lines. The antibodies from four positive hybrids showed a broad reactivity, whereas those from three hybrids reacted exclusively with melanoma cells. The antibodies from two of these three hybrids, alpha-Mel/5 and alpha-Mel/14, seem to be directed against common melanoma antigen(s) since they reacted with all (with one exception) of the 16 melanoma cell lines tested only with five of the 16 melanoma lines. Reciprocal binding inhibition tests using [3H]leeucine-labeled antibodies showed that alpha-Mel/5 and alpha-Mel/14 antibodies were directed against different antigenic determinants.
Resumo:
Pooled F(ab')2 fragments of three MAbs against distinct epitopes of carcinoembryonic antigen (CEA) were used for radioimmunotherapy of nude mice bearing a subcutaneous human colon carcinoma xenograft. 9-10 d after transplantation when tumor nodules were in exponential growth, 36 mice were treated by intravenous injection of different amounts of 131I-labeled MAb F(ab')2. All 14 mice injected with a single dose of 2,200 (n = 10) or 2,800 microCi (n = 4) showed complete tumor remission. 8 of the 10 mice treated with 2,200 microCi survived in good health for 1 yr when they were killed and shown to be tumor free. Four of nine other mice treated with four fractionated doses of 400 microCi showed no tumor relapse for more than 9 mo. In contrast, all 15 mice injected with 1,600-3,000 microCi 131I-control IgG F(ab')2 showed tumor growth retardation of only 1-4 wk, and 15 of 16 mice injected with unlabeled anti-CEA MAb F(ab')2 showed unmodified tumor progression as compared with untreated mice. From tissue radioactivity distributions it was calculated that by an injection of 2,200 microCi 131I-MAb F(ab')2 a mean dose of 8,335 rad was selectively delivered to the tumor, while the tissue-absorbed radiation doses for the normal organs were: peripheral blood, 2,093; stomach, 1,668; kidney, 1,289; lung, 1,185; liver, 617; spleen, 501; small intestine, 427; large intestine, 367; bone, 337; and muscle, 198. These treatments were well tolerated since out of 19 mice with complete tumor remission only 4 required bone marrow transplantation and 17 were in good health for 6-12 mo of observation. The results demonstrate the selective destruction of established human colon carcinoma transplants by intravenous injection of either single or fractionated doses of 131I-MAb F(ab')2.
Resumo:
In 63 patients with histologically proved gynecologie carcinoma, circulating carcinoembryonic antigen (CEA) was determined by radioimmunoassay before and at two intervals after treatment. Thirty-one patients of 63 had CEA values over 2.5 ng. per milliliter before treatment. In general, the CEA levels were low compared to those found in endodermal carcinoma. The percentage of elevated CEA values was slightly higher in cases of carcinoma of the cervix and corpus uteri than in those of carcinoma of the ovary. All patients with CEA levels greater than 2.5 ng. per milliliter treated by complete surgical resection of tumor showed a drop of CEA levels to below 2.5 ng. per milliliter seven weeks after operation. In contrast, patients with palliative therapy showed no change in CEA values. About half of the patients treated with a complete course of internal and external radiotherapy showed a drop of CEA levels to below 2.5 ng. per milliliter, whereas the other patients showed fluctuating CEA values. No correlation between clinical status and evolution of CEA levels in these patients could be drawn at the present time. The CEA test seems to be of little value for the earl of diagnosis of gynecologie carcinoma but appears to be interesting for the evaluation of therapy and the follow-up of patients with diagnosed cases.
Resumo:
Since new technologies based on solid phase assays (SPA) have been routinely incorporated in the transplant immunology laboratory, the presence of pretransplantation donor-specific antibodies (DSA) against human leukocyte antigen (HLA) molecules has generally been considered as a risk factor for acute rejection (AR) and, in particular, for acute humoral rejection (AHR). We retrospectively studied 113 kidney transplant recipients who had negative prospective T-cell and B-cell complement-dependent cytotoxicity (CDC) crossmatches at the time of transplant. Pretransplantation sera were screened for the presence of circulating anti-HLA antibody and DSA by using highly sensitive and HLA-specific Luminex assay, and the results were correlated with AR and AHR posttransplantation. We found that approximately half of our patient population (55/113, 48.7%) had circulating anti-HLA antibody pretransplantation. Of 113 patients, 11 (9.7%) had HLA-DSA. Of 11 rejection episodes post-transplant, only two patients had pretransplantation DSA, of whom one had a severe AHR (C4d positive). One-year allograft survival was similar between the pretransplantation DSA-positive and -negative groups. Number, class, and intensity of pretransplantation DSA, as well as presensitizing events, could not predict AR. We conclude that, based on the presence of pretransplantation DSA, post-transplantation acute rejections episodes could not have been predicted. The only AHR episode occurred in a recipient with pretransplantation DSA. More work should be performed to better delineate the precise clinical significance of detecting low titers of DSA before transplantation.
Resumo:
Leishmania promastigotes polypeptides are analyzed by immunoblotting with sera from patients infected with different Leishmania species and presenting visceral or cutaneous infections. These sera recognize Leishmania polypeptides in several molecular masses. The major findings of this study are as follow. 1) The Leishmania 94 kDa antigen, which is specifically recognized by all sera from L. infantum-infected patients with visceral infection, is recognized by some sera from L. infantum-infected patients presenting cutaneous infection. 2) All patients with cutaneous infections due to L. tropica, L. amazonensis, or L. guyanensis do not develop anti-94 kDa antibodies, whatever the Leishmania species used as antigens. 3) Difference in electrophoretic mobilities is seen between the 94 kDa antigen identified by sera from Leishmania infantum-infected patients, and the antigen both recognized by the Concavalin A lectin and a rabbit antiserum raised against deglycosylated Promastigote Surface Protease.
Resumo:
A novel melanoma-associated differentiation Ag whose surface expression can be enhanced or induced by IFN-gamma was identified by mAb Me14/D12. Testing of numerous tumor cell lines and tumor tissue sections showed that Me14/D12-defined Ag was present not only on melanoma but also on other tumor lines of neuroectodermal origin such as gliomas and neuroblastomas and on some lymphoblastic B cell lines, on monocytes and macrophages. Immunoprecipitation by mAb Me14/D12 of lysates from [35S]methionine-labeled melanoma cells analyzed by SDS-PAGE revealed two polypeptide chains of 33 and 38 KDa, both under reducing and nonreducing conditions. Cross-linking experiments indicated that the two chains were present at the cell surface as a dimeric structure. Two-dimensional gel electrophoresis showed that the two chains of 33 and 38 KDa had isoelectric points of 6.2 and 5.7, respectively. Treatment of the melanoma cells with tunicamycin, an inhibitor of N-linked glycosylation, resulted in a reduction of the Mr from 33 to 24 KDa and from 38 to 26 KDa. Peptide maps obtained after Staphylococcus aureus V8 protease digestion showed no shared peptides between the two chains. Although biochemical data indicate that Me14/D12 molecules do not correspond to any known MHC class II Ag, their dimeric structure, tissue distribution, and regulation of IFN-gamma suggest that they could represent a new member of the MHC class II family.
Resumo:
The relatively low frequencies of tumor Ag-specific T-cells in PBMC and metastases from cancer patients have long precluded the analysis of their direct ex vivo cytolytic capacity. Using a new composite technique that works well with low cell numbers, we aimed at determining the functional competence of melanoma-specific CD8(+) T-cells. A multiparameter flow cytometry based technique was applied to assess the cytolytic function, degranulation and IFNγ production by tumor Ag-specific CD8(+) T-cells from PBMC and tumor-infiltrated lymph nodes (TILN) of melanoma patients. We found strong cytotoxicity by T-cells not only when they were isolated from PBMC but also from TILN. Cytotoxicity was observed against peptide-pulsed target cells and melanoma cells presenting the naturally processed endogenous antigen. However, unlike their PBMC-derived counterparts, T-cells from TILN produced only minimal amounts of IFNγ, while exhibiting similar levels of degranulation, revealing a critical functional dichotomy in metastatic lesions. Our finding of partial functional impairment fits well with the current knowledge that T-cells from cancer metastases are so-called exhausted, a state of T-cell hyporesponsiveness also found in chronic viral infections. The identification of responsible mechanisms in the tumor microenvironment is important for improving cancer therapies.
Resumo:
The activation of an apo-cytochrome c-specific T cell clone was found to differ, depending on the antigen-presenting cell population. Whereas total syngeneic spleen cells and bone marrow macrophages could be shown to trigger proliferation, IL 2, and MAF production by the T cell clone, a B cell lymphoma only induced MAF secretion. Further studies demonstrated that this effect was not due to a different antigen processing by the B lymphoma or to limiting amounts of Ia and antigen molecules on the B lymphoma cell surface. The dissociation of induction of MAF production from IL-2 production/proliferation found with the different antigen-presenting cells indicates strongly that molecules other than Ia and antigen may be required for the complete functional activation of antigen-specific T cell clones.