316 resultados para BONE TISSUES
Resumo:
Bone mineral density (BMD) measured by dual-energy X-ray absorptiometry (DXA) is used to diagnose osteoporosis and assess fracture risk. However, DXA cannot evaluate trabecular microarchitecture. This study used a novel software program (TBS iNsight; Med-Imaps, Geneva, Switzerland) to estimate bone texture (trabecular bone score [TBS]) from standard spine DXA images. We hypothesized that TBS assessment would differentiate women with low trauma fracture from those without. In this study, TBS was performed blinded to fracture status on existing research DXA lumbar spine (LS) images from 429 women. Mean participant age was 71.3 yr, and 158 had prior fractures. The correlation between LS BMD and TBS was low (r = 0.28), suggesting these parameters reflect different bone properties. Age- and body mass index-adjusted odds ratios (ORs) ranged from 1.36 to 1.63 for LS or hip BMD in discriminating women with low trauma nonvertebral and vertebral fractures. TBS demonstrated ORs from 2.46 to 2.49 for these respective fractures; these remained significant after lowest BMD T-score adjustment (OR = 2.38 and 2.44). Seventy-three percent of all fractures occurred in women without osteoporosis (BMD T-score > -2.5); 72% of these women had a TBS score below the median, thereby appropriately classified them as being at increased risk. In conclusion, TBS assessment enhances DXA by evaluating trabecular pattern and identifying individuals with vertebral or low trauma fracture. TBS identifies 66-70% of women with fracture who were not classified with osteoporosis by BMD alone.
Resumo:
The ideal reconstruction technique for complex defects of the lower limb consists of replacing tissue with similar tissue in an attempt to achieve a good functional result. A 23-year-old white male sustained a crush injury with a grade IIIB open ankle dislocation. After open reduction and fixation, the patient developed severe osteomyelitis at the tibiotalar joint requiring a staged and radical debridement with a substantial combined soft tissue and bony defect over the distal tibia, fibula, and talus area. The reconstructive approach consisted of a modified model of the propeller flap, implementing the spare part concept in a 2-stage procedure using a prefabricated and vascularized "double-barrel" fibular graft. At 17 months postoperatively, a plain radiograph showed bony union with complete and stable coverage of the soft tissue defect. The patient was fully weightbearing. In conclusion, there is evidence to suggest that the established concept of a soft tissue propeller flap can be implemented on bone.
Resumo:
BACKGROUND. Human primary fetal bone cells (hFBC) are being characterized for use in bone tissue regeneration. Unlike human mesenchymal stem cells (hMSC), hFBC are partially differentiated with high expansion and regeneration potential. To date, proliferative and osteoblastic differentiation capacities of fetal bone cells remain poorly examined. The goal of this study was to define an environmental culture conditions for optimal proliferation and production of extracellular bone matrix leading to efficient bone repair. METHODS. Human primary FBC derived from our dedicated, consistent banks of bone cells comprising several fetal donors. For proliferation study, monolayer cultures of both cell types were expanded in DMEM or α- MEM media. Osteoblastic differentiation potentials of both hFBC and hMSC were evaluated through RT-PCR. Regulation of osteogenic differentiation by protein ligands Wnt3a and Wnt5a was studied by ALP enzymatic activity measurement. RESULTS. Evaluation of the proliferation rate demonstrated that hFBC proliferated more rapidly in α-MEM medium. Regarding growth factors that could stimulate cell proliferation rate, we observed that PDGF, FGF2 and Wnt3a had positive effects on proliferation of hFBC. Gene expression analysis demonstrated a higher expression of runx2 in hFBC cultured in basal conditions, which was was similar than that was observed in hMSC in osteoinductive culture conditions. Expression of sox9 was very low in hBFC and hMSC, compared to expression observed in fetal cartilage cells. Looking at osteogenic differentiation capacity, ALP activity was positively regulated byWnt5awhen hFBCwere cultured inα-MEM, but not in DMEM. Conversely, Wnt3a was shown to block the effect of osteogenic inductors on differentiation of both cell types. CONCLUSION. Data presented in this study indicate that the proliferation and differentiation of fetal and mesenchymal stem cells is optimal in α- MEM. Evidence for a pre-differentiated state of hBFC was given by extracellular matrix spontaneous mineralization as well as by higher ALP activity levels observed for these cells in baseline culture conditions, in comparison with hMSC. As we showed that, in vitro, hFBC express a higher capacity to differentiate in osteoblasts, they represent an attractive and promising prospect for fundamental research, and specifically for a new generation of skeletal tissue engineering.
Resumo:
We evaluated the longitudinal effects of anti-resorptive agents (534 treated women vs. 1,150 untreated) on lumbar spine bone mineral density (BMD) and trabecular bone score (TBS). TBS was responsive to treatment in women over age 50. The treatment-related increase in TBS was less than the increase in BMD, which is consistent with bone texture preservation. INTRODUCTION: In addition to inducing an increase in BMD, anti-resorptive agents also help to preserve bone architecture. TBS, a new gray-level texture measurement, correlates with 3D parameters of bone micro-architecture independent of BMD. Our objective was to evaluate the longitudinal effects of anti-resorptive agents on lumbar spine BMD and TBS. METHODS: Women (≥50 years), from the BMD program database for the province of Manitoba, Canada, who had not received any anti-resorptive drug prior to their initial dual X-ray absorptiometry (DXA) exam were divided into two groups: untreated, those without any anti-resorptive drug over the course of follow-up, and treated, those with a non-estrogen anti-resorptive drug (86 % bisphosphonates, 10 % raloxifene, and 4 % calcitonin). Lumbar spine TBS was calculated for each lumbar spine DXA examination. Changes in TBS and BMD between baseline and follow-up (mean follow-up 3.7 years), expressed in percentage per year, were compared between the two groups. RESULTS: A total of 1,150 untreated women and 534 treated women met the inclusion criteria. Only a weak correlation was seen between BMD and TBS in either group. Significant intergroup differences in BMD change and TBS change were observed over the course of follow-up (p < 0.001). Similar mean decreases in BMD and TBS (-0.36 %/year and -0.31 %/year, respectively) were seen for untreated subjects (both p < 0.001). Conversely, treated subjects exhibited a significant mean increase in BMD (+1.86 %/year, p < 0.002) and TBS (+0.20 %/year, p < 0.001). CONCLUSION: TBS is responsive to treatment with non-estrogen anti-resorptive drug therapy in women over age 50. The treatment-related increase in TBS is less than the increase in BMD, which is consistent with bone texture preservation.
Resumo:
Background:Type 2 diabetes (T2D) is associated with increased fracture risk but paradoxically greater BMD. TBS (trabecular bone score), a novel grey-level texture measurement extracted from DXA images, correlates with 3D parameters of bone micro-architecture. We evaluated the ability of lumbar spine (LS) TBS to account for the increased fracture risk in diabetes. Methods:29,407 women ≥50 years at the time of baseline hip and spine DXA were identified from a database containing all clinical BMD results for the Province of Manitoba, Canada. 2,356 of the women satisfied a well-validated definition for diabetes, the vast majority of whom (>90%) would have T2D. LS L14 TBS was derived for each spine DXA examination blinded to clinical parameters and outcomes. Health service records were assessed for incident non-traumatic major osteoporotic fracture codes (mean follow-up 4.7 years). Results:In linear regression adjusted for FRAX risk factors (age,BMI, glucocorticoids, prior major fracture, rheumatoid arthritis, COPD as a smoking proxy, alcohol abuse) and osteoporosis therapy, diabetes was associated with higher BMD for LS, femoral neck and total hip but lower LS TBS (all p<0.001). Similar results were seen after excluding obese subjects withBMI>30. In logistic regression (Figure), the adjusted odds ratio (OR) for a skeletal measurement in the lowest vs highest tertile was less than 1 for all BMD measurements but increased for LS TBS (adjusted OR 2.61, 95%CI 2.30-2.97). Major osteoporotic fractures were identified in 175 (7.4%) with and 1,493 (5.5%) without diabetes (p < 0.001). LS TBS predicted fractures in those with diabetes (adjusted HR 1.27, 95%CI 1.10-1.46) and without diabetes (HR 1.31, 95%CI 1.24-1.38). LS TBS was an independent predictor of fracture (p<0.05) when further adjusted for BMD (LS, femoral neck or total hip). The explanatory effect of diabetes in the fracture prediction model was greatly reduced when LS TBS was added to the model (indicating that TBS captured a large portion of the diabetes-associated risk), but was paradoxically increased from adding any of the BMD measurements. Conclusions:Lumbar spine TBS is sensitive to skeletal deterioration in postmenopausal women with diabetes, whereas BMD is paradoxically greater. LS TBS predicts osteoporotic fractures in those with diabetes, and captures a large portion of the diabetes-associated fracture risk. Combining LS TBS with BMD incrementally improves fracture prediction.
Resumo:
Osteoporosis (OP) is a systemic skeletal disease characterized by a low bone mineral density (BMD) and a micro-architectural (MA) deterioration. Clinical risk factors (CRF) are often used as a MA approximation. MA is yet evaluable in daily practice by the trabecular bone score (TBS) measure. TBS is very simple to obtain, by reanalyzing a lumbar DXA-scan. TBS has proven to have diagnosis and prognosis values, partially independent of CRF and BMD. The aim of the OsteoLaus cohort is to combine in daily practice the CRF and the information given by DXA (BMD, TBS and vertebral fracture assessment (VFA)) to better identify women at high fracture risk. The OsteoLaus cohort (1400 women 50 to 80 years living in Lausanne, Switzerland) started in 2010. This study is derived from the cohort COLAUS who started in Lausanne in 2003. The main goal of COLAUS is to obtain information on the epidemiology and genetic determinants of cardiovascular risk in 6700 men and women. CRF for OP, bone ultrasound of the heel, lumbar spine and hip BMD, VFA by DXA and MA evaluation by TBS are recorded in OsteoLaus. Preliminary results are reported. We included 631 women: mean age 67.4 ± 6.7 years, BMI 26.1 ± 4.6, mean lumbar spine BMD 0.943 ± 0.168 (T-score − 1.4 SD), and TBS 1.271 ± 0.103. As expected, correlation between BMD and site matched TBS is low (r2 = 0.16). Prevalence of VFx grade 2/3, major OP Fx and all OP Fx is 8.4%, 17.0% and 26.0% respectively. Age- and BMI-adjusted ORs (per SD decrease) are 1.8 (1.2-2.5), 1.6 (1.2-2.1), and 1.3 (1.1-1.6) for BMD for the different categories of fractures and 2.0 (1.4-3.0), 1.9 (1.4-2.5), and 1.4 (1.1-1.7) for TBS respectively. Only 32 to 37% of women with OP Fx have a BMD < − 2.5 SD or a TBS < 1.200. If we combine a BMD < − 2.5 SD or a TBS < 1.200, 54 to 60% of women with an osteoporotic Fx are identified. As in the already published studies, these preliminary results confirm the partial independence between BMD and TBS. More importantly, a combination of TBS subsequent to BMD increases significantly the identification of women with prevalent OP Fx which would have been misclassified by BMD alone. For the first time we are able to have complementary information about fracture (VFA), density (BMD), micro- and macro architecture (TBS and HAS) from a simple, low ionizing radiation and cheap device: DXA. Such complementary information is very useful for the patient in the daily practice and moreover will likely have an impact on cost effectiveness analysis.
Resumo:
BACKGROUND: Dietary acid charge enhances bone loss. Bicarbonate or alkali diet decreases bone resorption in humans. We compared the effect of an alkaline mineral water, rich in bicarbonate, with that of an acid one, rich in calcium only, on bone markers, in young women with a normal calcium intake. METHODS: This study compared water A (per litre: 520 mg Ca, 291 mg HCO(3)(-), 1160 mg SO(4)(-), Potential Renal Acid load (PRAL) +9.2 mEq) with water B (per litre: 547 mg Ca, 2172 mg HCO(3)(-), 9 mg SO(4)(-), PRAL -11.2 mEq). 30 female dieticians aged 26.3 yrs (SD 7.3) were randomized into two groups, followed an identical weighed, balanced diet (965 mg Ca) and drank 1.5 l/d of the assigned water. Changes in blood and urine electrolytes, C-telopeptides (CTX), urinary pH and bicarbonate, and serum PTH were measured after 2 and 4 weeks. RESULTS: The two groups were not different at baseline, and showed a similar increase in urinary calcium excretion. Urinary pH and bicarbonate excretion increased with water B, but not with water A. PTH (p=0.022) and S-CTX (p=0.023) decreased with water B but not with water A. CONCLUSION: In calcium sufficiency, the acid calcium-rich water had no effect on bone resorption, while the alkaline water rich in bicarbonate led to a significant decrease of PTH and of S-CTX.
Resumo:
Context: In the milder form of primary hyperparathyroidism (PHPT), cancellous bone, represented by areal bone mineral density at the lumbar spine by dual-energy x-ray absorptiometry (DXA), is preserved. This finding is in contrast to high-resolution peripheral quantitative computed tomography (HRpQCT) results of abnormal trabecular microstructure and epidemiological evidence for increased overall fracture risk in PHPT. Because DXA does not directly measure trabecular bone and HRpQCT is not widely available, we used trabecular bone score (TBS), a novel gray-level textural analysis applied to spine DXA images, to estimate indirectly trabecular microarchitecture. Objective: The purpose of this study was to assess TBS from spine DXA images in relation to HRpQCT indices and bone stiffness in radius and tibia in PHPT. Design and Setting: This was a cross-sectional study conducted in a referral center. Patients: Participants were 22 postmenopausal women with PHPT. Main Outcome Measures: Outcomes measured were areal bone mineral density by DXA, TBS indices derived from DXA images, HRpQCT standard measures, and bone stiffness assessed by finite element analysis at distal radius and tibia. Results: TBS in PHPT was low at 1.24, representing abnormal trabecular microstructure (normal ≥1.35). TBS was correlated with whole bone stiffness and all HRpQCT indices, except for trabecular thickness and trabecular stiffness at the radius. At the tibia, correlations were observed between TBS and volumetric densities, cortical thickness, trabecular bone volume, and whole bone stiffness. TBS correlated with all indices of trabecular microarchitecture, except trabecular thickness, after adjustment for body weight. Conclusion: TBS, a measurement technology readily available by DXA, shows promise in the clinical assessment of trabecular microstructure in PHPT.
Resumo:
Metallic foreign bodies are rarely found in the maxillary sinus, and usually they have a dental origin.Potential complications related to foreign bodies include recurrent sinusitis, rhinolith formation, cutaneous fistula,chemical poisoning, facial neuralgic pain and even malignancies.Two main surgical approaches are currently used for the removal of foreign bodies in the maxillary sinus: the bone flap and the endoscopic sinus techniques. We are reporting two unusual cases of large high-velocity foreign bodies removed by a modified maxillary lateral antrotomy,with free bone flap repositioning and fixation with a titanium miniplate.
Resumo:
Cell therapy for nucleus pulposus (NP) regeneration is an attractive treatment for early disc degeneration as shown by studies using autologous NP cells or stem cells. Another potential source of cells is foetal cells. We investigated the feasibility of isolating foetal cells from human foetal spine tissues and assessed their chondrogenic potential in alginate bead cultures. Histology and immunohistochemistry of foetal tissues showed that the structure and the matrix composition (aggrecan, type I and II collagen) of foetal intervertebral disc (IVD) were similar to adult IVD. Isolated foetal cells were cultured in monolayer in basic media supplemented with 10% Fetal Bovine Serum (FBS) and from each foetal tissue donation, a cell bank of foetal spine cells at passage 2 was established and was composed of around 2000 vials of 5 million cells. Gene expression and immunohistochemistry of foetal spine cells cultured in alginate beads during 28 days showed that cells were able to produce aggrecan and type II collagen and very low level of type I and type X collagen, indicating chondrogenic differentiation. However variability in matrix synthesis was observed between donors. In conclusion, foetal cells could be isolated from human foetal spine tissues and since these cells showed chondrogenic potential, they could be a potential cell source for IVD regeneration.
Resumo:
Controversy exists about the best method to achieve bone fusion in four-corner arthrodesis. Thirty-five patients who underwent this procedure by our technique were included in the study. Surgical indications were stage II-III SLAC wrist, stage II SNAC wrist and severe traumatic midcarpal joint injury. Mean follow-up was 4.6 years. Mean active flexion and extension were 34 degrees and 30 degrees respectively; grip strength recovery was 79%. Radiological consolidation was achieved in all cases. The mean DASH score was 23 and the postoperative pain improvement by visual analogue scale was statistically significant. Return to work was possible at 4 months for the average patient. Complications were a capitate fracture in one patient and the need for hardware removal in four cases. Four-corner bone wrist arthrodesis by dorsal rectangular plating achieves an acceptable preservation of range of motion with good pain relief, an excellent consolidation rate and minimal complications.
Resumo:
Altered bone micro-architecture is an important factor in accounting for fragility fractures. Until recently, it has not been possible to gain information about skeletal microstructure in a way that is clinically feasible. Bone biopsy is essentially a research tool. High-resolution peripheral Quantitative Computed Tomography, while non-invasive, is available only sparsely throughout the world. The trabecular bone score (TBS) is an imaging technology adapted directly from the Dual Energy X-Ray Absorptiometry (DXA) image of the lumbar spine. Thus, it is potentially readily and widely available. In recent years, a large number of studies have demonstrated that TBS is significantly associated with direct measurements of bone micro-architecture, predicts current and future fragility fractures in primary osteoporosis, and may be a useful adjunct to BMD for fracture detection and prediction. In this review, we summarize its potential utility in secondary causes of osteoporosis. In some situations, like glucocorticoid-induced osteoporosis and in diabetes mellitus, the TBS appears to out-perform DXA. It also has apparent value in numerous other disorders associated with diminished bone health, including primary hyperparathyroidism, androgen-deficiency, hormone-receptor positive breast cancer treatment, chronic kidney disease, hemochromatosis, and autoimmune disorders like rheumatoid arthritis. Further research is both needed and warranted to more clearly establish the role of TBS in these and other disorders that adversely affect bone.
Resumo:
The aim of the present study is to determine the level of correlation between the 3-dimensional (3D) characteristics of trabecular bone microarchitecture, as evaluated using microcomputed tomography (μCT) reconstruction, and trabecular bone score (TBS), as evaluated using 2D projection images directly derived from 3D μCT reconstruction (TBSμCT). Moreover, we have evaluated the effects of image degradation (resolution and noise) and X-ray energy of projection on these correlations. Thirty human cadaveric vertebrae were acquired on a microscanner at an isotropic resolution of 93μm. The 3D microarchitecture parameters were obtained using MicroView (GE Healthcare, Wauwatosa, MI). The 2D projections of these 3D models were generated using the Beer-Lambert law at different X-ray energies. Degradation of image resolution was simulated (from 93 to 1488μm). Relationships between 3D microarchitecture parameters and TBSμCT at different resolutions were evaluated using linear regression analysis. Significant correlations were observed between TBSμCT and 3D microarchitecture parameters, regardless of the resolution. Correlations were detected that were strongly to intermediately positive for connectivity density (0.711≤r(2)≤0.752) and trabecular number (0.584≤r(2)≤0.648) and negative for trabecular space (-0.407 ≤r(2)≤-0.491), up to a pixel size of 1023μm. In addition, TBSμCT values were strongly correlated between each other (0.77≤r(2)≤0.96). Study results show that the correlations between TBSμCT at 93μm and 3D microarchitecture parameters are weakly impacted by the degradation of image resolution and the presence of noise.
Resumo:
To compare the prediction of hip fracture risk of several bone ultrasounds (QUS), 7062 Swiss women > or =70 years of age were measured with three QUSs (two of the heel, one of the phalanges). Heel QUSs were both predictive of hip fracture risk, whereas the phalanges QUS was not. INTRODUCTION: As the number of hip fracture is expected to increase during these next decades, it is important to develop strategies to detect subjects at risk. Quantitative bone ultrasound (QUS), an ionizing radiation-free method, which is transportable, could be interesting for this purpose. MATERIALS AND METHODS: The Swiss Evaluation of the Methods of Measurement of Osteoporotic Fracture Risk (SEMOF) study is a multicenter cohort study, which compared three QUSs for the assessment of hip fracture risk in a sample of 7609 elderly ambulatory women > or =70 years of age. Two QUSs measured the heel (Achilles+; GE-Lunar and Sahara; Hologic), and one measured the heel (DBM Sonic 1200; IGEA). The Cox proportional hazards regression was used to estimate the hazard of the first hip fracture, adjusted for age, BMI, and center, and the area under the ROC curves were calculated to compare the devices and their parameters. RESULTS: From the 7609 women who were included in the study, 7062 women 75.2 +/- 3.1 (SD) years of age were prospectively followed for 2.9 +/- 0.8 years. Eighty women reported a hip fracture. A decrease by 1 SD of the QUS variables corresponded to an increase of the hip fracture risk from 2.3 (95% CI, 1.7, 3.1) to 2.6 (95% CI, 1.9, 3.4) for the three variables of Achilles+ and from 2.2 (95% CI, 1.7, 3.0) to 2.4 (95% CI, 1.8, 3.2) for the three variables of Sahara. Risk gradients did not differ significantly among the variables of the two heel QUS devices. On the other hand, the phalanges QUS (DBM Sonic 1200) was not predictive of hip fracture risk, with an adjusted hazard risk of 1.2 (95% CI, 0.9, 1.5), even after reanalysis of the digitalized data and using different cut-off levels (1700 or 1570 m/s). CONCLUSIONS: In this elderly women population, heel QUS devices were both predictive of hip fracture risk, whereas the phalanges QUS device was not.