340 resultados para ATP binding cassette transporter
Resumo:
Alpha1-adrenoceptors were identified in murine tissues by [3H]prazosin saturation binding studies, with a rank order of cerebral cortex > cerebellum > liver > lung > kidney > heart > spleen, with the spleen not exhibiting detectable expression. Competition binding studies were performed with 5-methylurapidil, BMY 7378, methoxamine, (+)-niguldipine, noradrenaline, SB 216469 and tamsulosin. On the basis of monophasic low-affinity competition by BMY 7378, alpha1D-adrenoceptors were not detected at the protein level in any tissue. On the basis of competition studies with the alpha1A/alpha1B-discriminating drugs, alpha1B-adrenoceptors appeared to be the predominant or even the sole subtype in murine liver, lung and cerebellum, whereas murine cerebral cortex and kidney contained approximately 30% and 50% of alpha1A-adrenoceptors, respectively. The affinities of the various competitors in the murine tissues were quite similar to those reported from other species. The ratio of high- and low-affinity sites for tamsulosin did not in all cases match the percentages of alpha1A- and alpha1B-adrenoceptors detected by the other competitors; however, the low-affinity component of the tamsulosin competition curves was abolished in the cerebral cortex of alpha1B-adrenoceptor knockout mice. Treatment with chloroethylclonidine (10 microM, 30 min, 37 degrees C) inactivated the alpha1-adrenoceptors in all tissues by >75%. When the concentration-dependent inactivation of tissue alpha1B-adrenoceptors (liver) and tissue alpha1A-adrenoceptors (cerebral cortex from alpha1B-adrenoceptor knockout mice) was compared, alpha1A-adrenoceptors were only slightly less sensitive toward chloroethylclonidine than alpha1B-adrenoceptors. We conclude that murine tissues express alpha1A- and alpha1B-adrenoceptors, which are largely similar to those in other species. However, the tissue-specific distribution of subtypes may differ from that of other species.
Resumo:
A variety of chemokines and inflammatory molecules are concomitantly produced at target sites of leukocyte trafficking and homing, accounting for the complex cellular responses occurring in homeostasis and inflammation. The chemokine CXCL12 plays an essential and unique role in homeostatic regulation of leukocyte traffic and tissue regeneration. The chromatin protein HMGB1 is released by dying and distressed cells, and acts as a Damage Associated Molecular Pattern or alarmin, promoting cell migration towards the site of tissue damage. We show here that HMGB1 synergises with CXCL12 by forming a heterocomplex that we characterized by NMR chemical shift mapping. The heterocomplex enhances CXCR4-induced responses on cells of the immune system, acting exclusively through the CXCL12 receptor CXCR4, and not through the HMGB1 receptors RAGE, TLR2 and TLR4. FRET analysis show that CXCL12 and CXCL12+HMGB1 promote a different conformational change in the homodimer CXCR4. The enhancement induced by HMGB1 on CXCL12-induced migration is selective, since little changes in migration of neutrophils and PreB 300.19-CCR2+ or -CCR7+ are observed towards CXCL8 and CCR2 or CCR7 agonists. HMGB1 also promotes CXCL 12 release, which is ultimately responsible for the chemoattractant activities of HMGB1. This study highlights the role of HMGB1 in promoting CXCL12-dependent cell migration, and suggests a cooperative role of these two molecules in tissue repair as well as in pathological conditions, such as rheumatoid arthritis.
Resumo:
Mechanical force modulates myriad cellular functions including migration, alignment, proliferation, and gene transcription. Mechanotransduction, the transmission of mechanical forces and its translation into biochemical signals, may be mediated by force induced protein conformation changes, subsequently modulating protein signaling. For the paxillin and focal adhesion kinase interaction, we demonstrate that force-induced changes in protein complex conformation, dissociation constant, and binding Gibbs free energy can be quantified by lifetime-resolved fluorescence energy transfer microscopy combined with intensity imaging calibrated by fluorescence correlation spectroscopy. Comparison with in vitro data shows that this interaction is allosteric in vivo. Further, spatially resolved imaging and inhibitor assays show that this protein interaction and its mechano-sensitivity are equal in the cytosol and in the focal adhesions complexes indicating that the mechano-sensitivity of this interaction must be mediated by soluble factors but not based on protein tyrosine phosphorylation.
Resumo:
BACKGROUND: Mutations in the sulfate transporter gene SLC26A2 (DTDST) cause a continuum of skeletal dysplasia phenotypes that includes achondrogenesis type 1B (ACG1B), atelosteogenesis type 2 (AO2), diastrophic dysplasia (DTD), and recessive multiple epiphyseal dysplasia (rMED). In 1972, de la Chapelle et al reported two siblings with a lethal skeletal dysplasia, which was denoted "neonatal osseous dysplasia" and "de la Chapelle dysplasia" (DLCD). It was suggested that DLCD might be part of the SLC26A2 spectrum of phenotypes, both because of the Finnish origin of the original family and of radiographic similarities to ACG1B and AO2. OBJECTIVE: To test the hypothesis whether SLC26A2 mutations are responsible for DLCD. METHODS: We studied the DNA from the original DLCD family and from seven Finnish DTD patients in whom we had identified only one copy of IVS1+2T>C, the common Finnish mutation. A novel SLC26A2 mutation was found in all subjects, inserted by site-directed mutagenesis in a vector harbouring the SLC26A2 cDNA, and expressed in sulfate transport deficient Chinese hamster ovary (CHO) cells to measure sulfate uptake activity. RESULTS: We identified a hitherto undescribed SLC26A2 mutation, T512K, homozygous in the affected subjects and heterozygous in both parents and in the unaffected sister. T512K was then identified as second pathogenic allele in the seven Finnish DTD subjects. Expression studies confirmed pathogenicity. CONCLUSIONS: DLCD is indeed allelic to the other SLC26A2 disorders. T512K is a second rare "Finnish" mutation that results in DLCD at homozygosity and in DTD when compounded with the milder, common Finnish mutation.
Resumo:
The genomic era has revealed that the large repertoire of observed animal phenotypes is dependent on changes in the expression patterns of a finite number of genes, which are mediated by a plethora of transcription factors (TFs) with distinct specificities. The dimerization of TFs can also increase the complexity of a genetic regulatory network manifold, by combining a small number of monomers into dimers with distinct functions. Therefore, studying the evolution of these dimerizing TFs is vital for understanding how complexity increased during animal evolution. We focus on the second largest family of dimerizing TFs, the basic-region leucine zipper (bZIP), and infer when it expanded and how bZIP DNA-binding and dimerization functions evolved during the major phases of animal evolution. Specifically, we classify the metazoan bZIPs into 19 families and confirm the ancient nature of at least 13 of these families, predating the split of the cnidaria. We observe fixation of a core dimerization network in the last common ancestor of protostomes-deuterostomes. This was followed by an expansion of the number of proteins in the network, but no major dimerization changes in interaction partners, during the emergence of vertebrates. In conclusion, the bZIPs are an excellent model with which to understand how DNA binding and protein interactions of TFs evolved during animal evolution.
Resumo:
Protein C3 of the complement system is known for its role in the nonspecific immune response. Covalent binding of C3b to antigen upon complement activation also plays a significant role in specific T cell immune response. C3b-antigen complexes can bind to complement receptors on the antigen-presenting cell, and the C3b antigen link (most often an ester link) remains fairly stable inside the cells. In this study, IgG1,kappa and IgG2a,kappa murine monoclonal antibodies (mAb) were used as antigens; covalent complexes between mAb and C3b were produced and purified in vitro from purified proteins; human B cell lines and T cell clones were raised from tumor patients who received mAb injections for cancer therapy or diagnosis. Recognition of epitopes of these mAb by T cell clones when the mAb were processed alone or bound to C3b was compared. IgG or IgG-C3b complexes presented by B cell lines were able to stimulate proliferation of kappa light chain-specific T cell clones at similar concentrations. In contrast, IgG-C3b complex recognition by heavy chain-specific T cell clones required 100-fold less IgG-C3b than uncomplexed IgG. As C3b was shown to be covalently bound only to the IgG heavy chains in the complexes, C3b chaperoning is restricted to only the IgG heavy chain and selectively influences intracellular steps of IgG heavy chain processing. This differential modulation of C3b suggests an early dissociation of IgG heavy and light chains in antigen-presenting cells.
Resumo:
Staphylococcus aureus experimental endocarditis relies on sequential fibrinogen binding (for valve colonization) and fibronectin binding (for endothelial invasion) conferred by peptidoglycan-attached adhesins. Fibronectin-binding protein A (FnBPA) reconciles these two properties--as well as elastin binding--and promotes experimental endocarditis by itself. Here we attempted to delineate the minimal subdomain of FnBPA responsible for fibrinogen and fibronectin binding, cell invasion, and in vivo endocarditis. A large library of truncated constructs of FnBPA was expressed in Lactococcus lactis and tested in vitro and in animals. A 127-amino-acid subdomain spanning the hinge of the FnBPA fibrinogen-binding and fibronectin-binding regions appeared necessary and sufficient to confer the sum of these properties. Competition with synthetic peptides could not delineate specific fibrinogen- and fibronectin-binding sites, suggesting that dual binding arose from protein folding, irrespective of clearly defined binding domains. Moreover, coexpressing the 127-amino-acid subdomain with remote domains of FnBPA further increased fibrinogen binding by > or =10 times, confirming the importance of domain interactions for binding efficacy. In animals, fibrinogen binding (but not fibronectin binding) was significantly associated with endocarditis induction, whereas both fibrinogen binding and fibronectin binding were associated with disease severity. Moreover, fibrinogen binding also combined with fibronectin binding to synergize the invasion of cultured cell lines significantly, a feature correlating with endocarditis severity. Thus, while fibrinogen binding and fibronectin binding were believed to act sequentially in colonization and invasion, they appeared unexpectedly intertwined in terms of both functional anatomy and pathogenicity (in endocarditis). This unforeseen FnBPA subtlety might bear importance for the development of antiadhesin strategies.
Resumo:
In our recent paper by Monnin et al. [Med. Phys. 33, 411-420 (2006)], an objective analysis of the relative performance of a computed radiography (CR) system using both standard single-side (ST-VI) and prototype dual-side read (ST-BD) plates was reported. The presampled modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) for the systems were determined at three different beam qualities representative of paediatric chest radiography, at an entrance detector air kerma of 5 microGy. Experiments demonstrated that, compared to the standard single-side read system, the MTF for the dual-side read system was slightly reduced, but a significant decrease in image noise resulted in a marked increase in DQE (+40%) in the low spatial frequency range. However, the DQE improvement for the ST-BD plate decreased with increasing spatial frequency, and, at spatial frequencies above 2.2 mm(-1), the DQE of the dual-side read system was lower than that of the single-side one.
Resumo:
DNA-binding proteins mediate a variety of crucial molecular functions, such as transcriptional regulation and chromosome maintenance, replication and repair, which in turn control cell division and differentiation. The roles of these proteins in disease are currently being investigated using microarray-based approaches. However, these assays can be difficult to adapt to routine diagnosis of complex diseases such as cancer. Here, we review promising alternative approaches involving protein-binding microarrays (PBMs) that probe the interaction of proteins from crude cell or tissue extracts with large collections of synthetic or natural DNA sequences. Recent studies have demonstrated the use of these novel PBM approaches to provide rapid and unbiased characterization of DNA-binding proteins as molecular markers of disease, for example cancer progression or infectious diseases.
Resumo:
The effects of the thyroid hormones on target cells are mediated through nuclear T3 receptors. In the peripheral nervous system, nuclear T3 receptors were previously detected with the monoclonal antibody 2B3 mAb in all the primary sensory neurons throughout neuronal life and in peripheral glia at the perinatal period only (Eur. J. Neurosci. 5, 319, 1993). To determine whether these nuclear T3 receptors correspond to functional ones able to bind T3, cryostat sections and in vitro cell cultures of dorsal root ganglion (DRG) or sciatic nerve were incubated with 0.1 nM [125I]-labeled T3, either alone to visualize the total T3-binding sites or added with a 10(3) fold excess of unlabeled T3 to estimate the part due to the non-specific T3-binding. After glutaraldehyde fixation, radioautography showed that the specific T3-binding sites were largely prevalent. The T3-binding capacity of peripheral glia in DRG and sciatic nerve was restricted to the perinatal period in vivo and to Schwann cells cultured in vitro. In all the primary sensory neurons, specific T3-binding sites were disclosed in foetal as well as adult rats. The detection of the T3-binding sites in the nucleus indicated that the nuclear T3 receptors are functional. Moreover the concomitant presence of both T3-binding sites and T3 receptors alpha isoforms in the perikaryon of DRG neurons infers that: 1) [125I]-labeled T3 can be retained on the T3-binding 'E' domain of nascent alpha 1 isoform molecules newly-synthesized on the perikaryal ribosomes; 2) the alpha isoforms translocated to the nucleus are modified by posttranslational changes and finally recognized by 2B3 mAb as nuclear T3 receptor. In conclusion, the radioautographic visualization of the T3-binding sites in peripheral neurons and glia confirms that the nuclear T3 receptors are functional and contributes to clarify the discordant intracellular localization provided by the immunocytochemical detection of nuclear T3 receptors and T3 receptor alpha isoforms.
Resumo:
Le cancer colorectal est la 3ème cause de décès liée au cancer dans l'Europe de l'Ouest et nécessite une prise en charge pluridisciplinaire. Les thérapies anticancéreuses récentes développées visent à inhiber les voies de signalisation cellulaires responsables de la prolifération des cellules tumorales. L'inhibition de la voie de signalisation cellulaire mTOR, est une stratégie prometteuse. En effet, mTOR est souvent suractivé dans les cellules du cancer colorectal et régule la croissance, la prolifération et la survie cellulaire. De nombreuses études récentes ont démontrés l'importance de l'activité de mTOR dans le développement du cancer colorectal et l'efficacité anti-tumorale des inhibiteurs allostériques de mTOR, telle que la rapamycine. Récemment, une nouvelle classe d'inhibiteur de mTOR, notamment PP242 et NVP-BEZ235, agissant comme inhibiteur ATP- compétitif a été développée. L'efficacité de ces inhibiteurs n'a pas été démontrée dans le contexte du cancer colorectal. Dans cette étude, nous avons comparé l'effet de PP242, un inhibiteur ATP-compétitif de mTOR et NVP-BEZ235, un inhibiteur dual de PI3K/mTOR par rapport à la rapamycine. Nous avons étudié, in vitro, leur effet sur la croissance, la prolifération et la survie cellulaire sur des lignées cellulaires du cancer du colon (LS174, SW480 et DLD-1) et, in vivo, sur la croissance de xénogreffes dans un modèle murin. Nous avons émis l'hypothèse que l'effet des ces nouveaux inhibiteurs seraient plus importants qu'avec la rapamycine. Nous avons observé que le PP242 et le NVP-BEZ235 réduisent significativement et de façon plus marquée que la rapamycine la croissance, la prolifération et la survie cellulaire des cellules LS174T et DLD-1. Ces inhibiteurs réduisent également la prolifération et la survie cellulaire des cellules SW480 alors que celles-ci étaient résistantes à la rapamycine. Nous avons également observé que les inhibiteurs PP242 et NVP-BEZ235 réduisaient la croissance des xénogreffes avec les lignées cellulaires LS174 et SW480. Finalement, nous avons remarqué que l'effet anti-tumoral des inhibiteurs ATP-compétitifs de mTOR était potentialisé par l'U0126, un inhibiteur de MEK/MAPK, souvent activé dans les voies de signalisation cellulaire du cancer colorectal. En conclusion, nous avons observé que les inhibiteurs ATP-compétitifs de mTOR bloquent la croissance de cellules tumorales du cancer colorectal in vitro et in vivo. Ces résultats démontrent que ces inhibiteurs représentent une option thérapeutique prometteuse dans le traitement du cancer colorectal et méritent d'être évalués dans des études cliniques.
Resumo:
The antigen-presenting cell-expressed CD40 is implied in the regulation of counteractive immune responses such as induction of pro-inflammatory and anti-inflammatory cytokines interleukin (IL)-12 and IL-10, respectively. The mechanism of this duality in CD40 function remains unknown. Here, we investigated whether such duality depends on ligand binding. Based on CD40 binding, we identifed two dodecameric peptides, peptide-7 and peptide-19, from the phage peptide library. Peptide-7 induces IL-10 and increases Leishmania donovani infection in macrophages, whereas peptide-19 induces IL-12 and reduces L. donovani infection. CD40-peptide interaction analyses by surface plasmon resonance and atomic force microscopy suggest that the functional differences are not associated with the studied interaction parameters. The molecular dynamic simulation of the CD40-peptides interaction suggests that these two peptides bind to two different places on CD40. Thus, we suggest for the first time that differential binding of the ligands imparts functional duality to CD40.
Resumo:
Double-strand breaks (DSBs) in DNA are caused by ionizing radiation. These chromosomal breaks can kill the cell unless repaired efficiently, and inefficient or inappropriate repair can lead to mutation, gene translocation and cancer. Two proteins that participate in the repair of DSBs are Rad52 and Ku: in lower eukaryotes such as yeast, DSBs are repaired by Rad52-dependent homologous recombination, whereas vertebrates repair DSBs primarily by Ku-dependent non-homologous end-joining. The contribution of homologous recombination to vertebrate DSB repair, however, is important. Biochemical studies indicate that Ku binds to DNA ends and facilitates end-joining. Here we show that human Rad52, like Ku, binds directly to DSBs, protects them from exonuclease attack and facilitates end-to-end interactions. A model for repair is proposed in which either Ku or Rad52 binds the DSB. Ku directs DSBs into the non-homologous end-joining repair pathway, whereas Rad52 initiates repair by homologous recombination. Ku and Rad52, therefore, direct entry into alternative pathways for the repair of DNA breaks.
Resumo:
Tat activates transcription by interacting with Sp1, NF-kappaB, positive transcription elongation factor b, and trans-activator-responsive element (TAR). Tat and Sp1 play major roles in transcription by protein-protein interactions at human immunodeficiency virus, type 1 (HIV-1) long terminal repeat. Sp1 activates transcription by interacting with cyclin T1 in the absence of Tat. To disrupt the transcription activation by Tat and Sp1, we fused Sp1-inhibiting polypeptides, zinc finger polypeptide, and the TAR-binding mutant Tat (TatdMt) together. A designed or natural zinc finger and Tat mutant fusion was used to target the fusion to the key regulatory sites (GC box and TAR) on the long terminal repeat and nascent short transcripts to disrupt the molecular interaction that normally result in robust transcription. The designed zinc finger and TatdMt fusions were targeted to the TAR, and they potently repressed both transcription and replication of HIV-1. The Sp1-inhibiting POZ domain, TatdMt, and zinc fingers are key functional domains important in repression of transcription and replication. The designed artificial zinc fingers were targeted to the high affinity Sp1-binding site, and by being fused with TatdMt and POZ domain, they strongly block both Sp1-cyclin T1-dependent transcription and Tat-dependent transcription, even in the presence of excess expressed Tat.
Resumo:
Stimulation of prostaglandin (PG) release in rat astroglial cultures by various substances, including phorbol esters, melittin, or extracellular ATP, has been reported recently. It is shown here that glucocorticoids (GCs) reduced both basal and stimulated PGD2 release. Hydrocortisone, however, did not inhibit ATP-, calcium ionophore A23187-, or tetradecanoyl phorbol acetate (TPA)-stimulated arachidonic acid release, and only TPA stimulations were affected by dexamethasone. GC-mediated inhibition of PGD2 release thus appeared to exclude regulation at the phospholipase A2 (PLA2) level. Therefore, the effects of GCs on the synthesis of lipocortin I (LC I), a potent, physiological inhibitor of PLA2, were studied in more detail. Dexamethasone was not able to enhance de novo synthesis of LC I in freshly seeded cultures and failed to increase LC I synthesis in 2-3-week-old cultures. It is surprising that LC I was the major LC synthesized in those cultures, and marked amounts accumulated with culture time, reaching plateau levels at approximately day 10. In contrast, LC I was barely detectable in vivo. This tonic inhibition of PLA2 is the most likely explanation for unsuccessful attempts to evoke PG release in astrocyte cultures by various physiological stimuli. GC receptor antagonists (progesterone and RU 38486) given throughout culture time reduced LC I accumulation and simultaneously increased PGD2 release. Nonetheless, a substantial production of LC I persisted in the presence of antagonists. Therefore, LC I induction did not seem to involve GC receptor activation. This was confirmed in serum- and GC-free brain cell aggregate cultures. Here also a marked accumulation of LC I was observed.(ABSTRACT TRUNCATED AT 250 WORDS)