266 resultados para ambulatory arterial blood pressure monitoring
Resumo:
This study investigated the neural regions involved in blood pressure reactions to negative stimuli and their possible modulation by attention. Twenty-four healthy human subjects (11 females; age = 24.75 ± 2.49 years) participated in an affective perceptual load task that manipulated attention to negative/neutral distractor pictures. fMRI data were collected simultaneously with continuous recording of peripheral arterial blood pressure. A parametric modulation analysis examined the impact of attention and emotion on the relation between neural activation and blood pressure reactivity during the task. When attention was available for processing the distractor pictures, negative pictures resulted in behavioral interference, neural activation in brain regions previously related to emotion, a transient decrease of blood pressure, and a positive correlation between blood pressure response and activation in a network including prefrontal and parietal regions, the amygdala, caudate, and mid-brain. These effects were modulated by attention; behavioral and neural responses to highly negative distractor pictures (compared with neutral pictures) were smaller or diminished, as was the negative blood pressure response when the central task involved high perceptual load. Furthermore, comparing high and low load revealed enhanced activation in frontoparietal regions implicated in attention control. Our results fit theories emphasizing the role of attention in the control of behavioral and neural reactions to irrelevant emotional distracting information. Our findings furthermore extend the function of attention to the control of autonomous reactions associated with negative emotions by showing altered blood pressure reactions to emotional stimuli, the latter being of potential clinical relevance.
Resumo:
BACKGROUND: The alpha1-adrenergic receptors (alpha1-ARs) play a key role in cardiovascular homeostasis. However, the functional role of alpha1-AR subtypes in vivo is still unclear. The aim of this study was to evaluate the cardiovascular influences of alpha1b-AR. METHODS AND RESULTS: In transgenic mice lacking alpha1-AR (KO) and their wild-type controls (WT), we evaluated blood pressure profile and cardiovascular remodeling induced by the chronic administration (18 days via osmotic pumps) of norepinephrine, angiotensin II, and subpressor doses of phenylephrine. Our results indicate that norepinephrine induced an increase in blood pressure levels only in WT mice. In contrast, the hypertensive state induced by angiotensin II was comparable between WT and KO mice. Phenylephrine did not modify blood pressure levels in either WT or KO mice. The cardiac hypertrophy and eutrophic vascular remodeling evoked by norepinephrine was observed only in WT mice, and this effect was independent of the hypertensive state because it was similar to that observed during subpressor phenylephrine infusion. Finally, the cardiac hypertrophy induced by thoracic aortic constriction was comparable between WT and KO mice. CONCLUSIONS: Our data demonstrate that the lack of alpha1b-AR protects from the chronic increase of arterial blood pressure induced by norepinephrine and concomitantly prevents cardiovascular remodeling evoked by adrenergic activation independently of blood pressure levels.
Resumo:
INTRODUCTION: Auscultatory nonmercury manual devices seem good alternatives for the mercury sphygmomanometers in the clinic and for research settings, but individual internal validation of each device is time-consuming. The aim of this study was to validate a new technique capable of testing two devices simultaneously, based on the International protocol of the European Society of Hypertension. METHODS: The concept of the new technique is to measure blood pressure alternatively by two observers using a mercury sphygmomanometer and by two observers using the A&D UM-101 and Accoson Greenlight 300 devices, connected by Y-tube to obtain simultaneous readings with both nonmercury devices. Thirty-three participants were enrolled (mean age 47.2±14.0 years). Nine sequential blood pressure measurements were performed for each participant. RESULTS: Both devices passed phase 1 using 15 participants. In phase 2.1 (n=33), on a maximum of 99 measurements, the Accoson device produced 81/95/99 measurements within 5/10/15 mmHg for systolic blood pressure (SBP) and 87/98/99 for diastolic blood pressure (DBP). The A&D device produced 86/96/99 for SBP and 94/99/99 for DBP. In phase 2.2 (n=33), 30 participants had at least 2 out of 3 SBP obtained with Accoson device within 5 mmHg of the mercury device, as compared with 29 of 33 participants with the A&D device. For DBP, this was 33 of 33 participants for both devices. CONCLUSION: Both the nonmercury devices passed the International protocol. The new technique of simultaneous device testing using a Y-tube represents a time saving application of the International protocol.
Resumo:
The synthesis of peptides which have the natriuretic and vasodilator properties of the atrial natriuretic factor has made it possible to study the physiological role of this recently discovered hormonal system. In addition to renal effects, atrial natriuretic peptides exert vascular, hemodynamic and endocrine actions which may participate in the regulation of plasma and interstitial volume as well as arterial blood pressure. Its acute hypotensive effect, which was observed in normal volunteers and in patients with cardiac failure or hypertension, is not entirely explained by its direct vasodilator effect. The complexity of its role is demonstrated by its inhibiting action on the synthesis and/or the activity of other vasoactive hormones. The observed increase in hematocrit suggests that vascular permeability may be enhanced; the resulting consequences, e.g. on blood viscosity, still need to be elucidated. When infusing atrial natriuretic peptides, there exists a clear delay between the moment steady-state plasma levels are achieved and peak effect occurs. This renders the interpretation of the results very difficult. At this moment, the physiological role of atrial natriuretic peptides as well as their potential future use as therapeutic agents cannot yet be fully appreciated.
Resumo:
The role of dietary sodium intake in the development, and its impact on the treatment, of hypertension are well recognized. However, many other nutritional compounds have been shown, or are believed, to influence blood pressure. Some compounds, such as caffeine and fructose, may raise arterial blood pressure, whereas others might lower arterial blood pressure, for example garlic, dark chocolate, fibers and potassium. In this article, we review several alimentary compounds and their (hypothesized) mechanisms of action, as well as the available evidence supporting a role of these compounds in the "non pharmacological" treatment and prevention of hypertension.
Resumo:
OBJECTIVE: To assess the prevalence of cardiovascular (CV) risk factors in Seychelles, a middle-income African country, and compare the cost-effectiveness of single-risk-factor management (treating individuals with arterial blood pressure >/= 140/90 mmHg and/or total serum cholesterol >/= 6.2 mmol/l) with that of management based on total CV risk (treating individuals with a total CV risk >/= 10% or >/= 20%).METHODS: CV risk factor prevalence and a CV risk prediction chart for Africa were used to estimate the 10-year risk of suffering a fatal or non-fatal CV event among individuals aged 40-64 years. These figures were used to compare single-risk-factor management with total risk management in terms of the number of people requiring treatment to avert one CV event and the number of events potentially averted over 10 years. Treatment for patients with high total CV risk (>/= 20%) was assumed to consist of a fixed-dose combination of several drugs (polypill). Cost analyses were limited to medication.FINDINGS: A total CV risk of >/= 10% and >/= 20% was found among 10.8% and 5.1% of individuals, respectively. With single-risk-factor management, 60% of adults would need to be treated and 157 cardiovascular events per 100 000 population would be averted per year, as opposed to 5% of adults and 92 events with total CV risk management. Management based on high total CV risk optimizes the balance between the number requiring treatment and the number of CV events averted.CONCLUSION: Total CV risk management is much more cost-effective than single-risk-factor management. These findings are relevant for all countries, but especially for those economically and demographically similar to Seychelles.
Resumo:
The clinical pharmacology of a synthetic rat atrial natriuretic peptide (rANP) was evaluated in normal volunteers. During a dose-ranging study at 1-40 micrograms/min we observed a dose-dependent decrease in mean intra-arterial blood pressure, an acceleration of the heart rate and a transient increase in blood flow to the skin. During a 4-h constant-dose infusion at 0.5 and 5.0 micrograms/min, inulin clearance remained unchanged but there was a dose-related fall in paraaminohippurate (PAH) clearance and an increase in the filtration fraction. Urinary excretion of sodium, chloride and calcium increased in a dose-related fashion, but with the high dose the excretion curve had a bell-shape. No change in plasma renin activity, angiotensin II and aldosterone was observed during the rANP infusion despite the excretion of large amounts of sodium and a blood pressure reduction with the high dose. Indocyanine green clearance, a measure of hepatic blood flow, was significantly decreased by a 2-h rANP infusion at 1.0 microgram/min. In normal volunteers, therefore, rANP induced vasodilation and blood pressure reduction, a decrease in renal and hepatic blood flow and a natriuretic and transient diuretic effect without activation of the renin-angiotensin-aldosterone system.
Resumo:
Objectives: Epidemiological studies suggest that adverse events in utero may predispose to premature cardiovascular disease in adulthood, but the mechanisms are not known. Recently, we found that young apparently healthy offspring of mothers with preeclampsia (PE) display systemic endothelial dysfunction. This problem could be related to PE per se or to a genetic abnormality that predisposes the mother to PE and the offspring to vascular dysfunction. To distinguish between these two possibilities, we assessed vascular function in offspring of PE, their siblings who were born after a normal pregnancy, and in control subjects.Methods: We measured endothelium-dependent vasodilation (flow-mediated vasodilation, FMD), in 10 pairs of healthy normotensive siblings, one born after PE (age 15±6 y; mean±SD), the other after normal pregnancy (17±6y) and in 17 (16±7y) controls. All subjects were born at term.Results: The vascular function in siblings of PE who were born after normal pregnancy was normal and comparable to the one in controls (8.6±1.5% vs. 8.1±1.3%, P=0.32), whereas offspring of PE displayed a roughly 30% smaller FMD than the two other groups (5.9±1.6%, P<0.005 vs. both siblings and controls, Figure). The endothelial dysfunction in the offspring of PE was not related to a difference in the central arterial blood pressure or arterial oxygen saturation, because they were comparable in the 3 groups. Figure 1. FMD in the three groups.Conclusions: These findings provide the first evidence that vascular dysfunction in offspring of PE is caused by PE itself, rather than by a genetic abnormality that predisposes the mother to PE and the offspring to a vascular defect. Prevention of PE and/or its successful treatment is expected to prevent vascular dysfunction and premature cardiovascular morbidity and mortality in the offspring.
Resumo:
PURPOSE OF REVIEW: Previous studies have shown that a variety of specific renal functions exhibit circadian oscillations. This review aims to provide an update on the molecular mechanisms underlying circadian rhythms in the kidney, and to discuss how dysregulation of circadian rhythms can interfere with kidney function. RECENT FINDINGS: The molecular mechanism responsible for generating and maintaining circadian rhythms has been unraveled in great detail. This mechanism, known as the circadian clock, drives circadian oscillation in expression levels of a large number of renal mRNA transcripts. Several proteins critically involved in renal homeostatic functions have been shown to exhibit significant circadian oscillation in their expression levels or in their posttranslational modifications. In transgenic mouse models, disruption of circadian clock activity results in dramatic changes in the circadian pattern of urinary sodium and potassium excretion and causes significant changes in arterial blood pressure. A growing amount of evidence suggests that dysregulation of circadian rhythms is associated with the development of hypertension and accelerated progression of chronic kidney disease and cardiovascular disease in humans. Chronotherapy studies have shown that the efficacy of antihypertensive medication is greatly dependent on the circadian time of drug administration. SUMMARY: Recent research points to the major role of circadian rhythms in renal function and in control of blood pressure.
Resumo:
Urate is the metabolic end point of purines in humans. Although supra-physiological plasma urate levels are associated with obesity, insulin resistance, dyslipidemia, and hypertension, a causative role is debated. We previously established a mouse model of hyperuricemia by liver-specific deletion of Glut9, a urate transporter that provides urate to the hepatocyte enzyme uricase. These LG9 knockout mice show mild hyperuricemia (120 μmol/l), which can be further increased by the urate precursor inosine. Here, we explored the role of progressive hyperuricemia on the cardiovascular function. Arterial blood pressure and heart rate were periodically measured by telemetry over 6 months in LG9 knockout mice supplemented with incremental amounts of inosine in a normal chow diet. This long-term inosine treatment elicited a progressive increase in uricemia up to 300 μmol/l; however, it did not modify heart rate or mean arterial blood pressure in LG9 knockout compared with control mice. Inosine treatment did not alter cardiac morphology or function measured by ultrasound echocardiography. However, it did induce mild renal dysfunction as revealed by higher plasma creatinine levels, lower glomerular filtration rate, and histological signs of chronic inflammation and fibrosis. Thus, in LG9 knockout mice, inosine-induced hyperuricemia was not associated with hypertension despite partial renal deficiency. This does not support a direct role of urate in the control of blood pressure.
Improving coronary artery bypass graft durability: use of the external saphenous vein graft support.
Resumo:
Coronary bypass grafting remains the best option for patients suffering from multivessel coronary artery disease, and the saphenous vein is used as an additional conduit for multiple complete revascularizations. However, the long-term vein graft durability is poor, with almost 75% of occluded grafts after 10 years. To improve the durability, the concept of an external supportive structure was successfully developed during the last years: the eSVS Mesh device (Kips Bay Medical) is an external support for vein graft made of weft-knitted nitinol wire into a tubular form with an approximate length of 24 cm and available in three diameters (3.5, 4.0 and 4.5 mm). The device is placed over the outer wall of the vein and carefully deployed to cover the full length of the graft. The mesh is flexible for full adaptability to the heart anatomy and is intended to prevent kinking and dilatation of the vein in addition to suppressing the intima hyperplasia induced by the systemic blood pressure. The device is designed to reduce the vein diameter of about 15-20% at most to prevent the vein radial expansion induced by the arterial blood pressure, and the intima hyperplasia leading to the graft failure. We describe the surgical technique for preparing the vein graft with the external saphenous vein graft support (eSVS Mesh) and we share our preliminary clinical results.