312 resultados para Vasoactive Metabolites
Resumo:
Inducible defenses, which provide enhanced resistance after initial attack, are nearly universal in plants. This defense signaling cascade is mediated by the synthesis, movement, and perception of jasmonic acid and related plant metabolites. To characterize the long-term persistence of plant immunity, we challenged Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum) with caterpillar herbivory, application of methyl jasmonate, or mechanical damage during vegetative growth and assessed plant resistance in subsequent generations. Here, we show that induced resistance was associated with transgenerational priming of jasmonic acid-dependent defense responses in both species, caused caterpillars to grow up to 50% smaller than on control plants, and persisted for two generations in Arabidopsis. Arabidopsis mutants that are deficient in jasmonate perception (coronatine insensitive1) or in the biogenesis of small interfering RNA (dicer-like2 dicer-like3 dicer-like4 and nuclear RNA polymerase d2a nuclear RNA polymerase d2b) do not exhibit inherited resistance. The observation of inherited resistance in both the Brassicaceae and Solanaceae suggests that this trait may be more widely distributed in plants. Epigenetic resistance to herbivory thus represents a phenotypically plastic mechanism for enhanced defense across generations.
Resumo:
Thioridazine is a commonly prescribed phenothiazine drug administered as a racemate and it is believed that its antipsychotic effect is mainly associated with (R)-thioridazine. A method based on high-performance liquid chromatography has been developed for the determination of the enantiomers of thioridazine and thioridazine 2-sulfone (THD 2-SO2 or sulforidazine) and of the enantiomers of the diastereoisomeric pairs of thioridazine 2-sulfoxide (THD 2-SO or mesoridazine) and thioridazine 5-sulfoxide (THD 5-SO) in the plasma of thioridazine-treated patients. The method involves sequential achiral and chiral HPLC. The limits of quantitation for total (R) + (S) concentrations were found to be 15 ng/ml for thioridazine and 5 ng/ml for its metabolites. The limits for the determination of the (R)/(S) ratios were found to be 60 ng/ml for racemic THD and 10 ng/ml for racemic THD 2-SO, THD 2-SO2, THD 5-SO (FE) and THD 5-SO (SE). The method has been used to determine the concentrations of the enantiomers of thioridazine and of its metabolites in the plasma of a patient treated with 100 mg of racemic thioridazine hydrochloride per os per day for 14 days. The results show a high enantioselectivity in the metabolism of this drug: the (R)/(S) ratios for THD, THD 2-SO (FE), THD 2-SO (SE), THD 2-SO2, THD 5-SO (FE) and THD 5-SO (SE) were found to be 3.90, 1.22, 6.10, 4.10, 0.09 and 28.0, respectively.
Resumo:
Background: Cocoa is rich in flavonoids, has anti-oxidative properties and increases the bioavailability of nitric oxide (NO). Adequate renal tissue oxygenation is crucial for the maintenance of renal function. The goal of this study was to investigate the effect of cocoa-rich dark chocolate (DC) on renal tissue oxygenation in humans, as compared to flavonoid-poor white chocolate (WC). Methods: Ten healthy volunteers with preserved kidney function (mean age ± SD 35 ± 12 years, 70% women, BMI 21 ± 3 kg/m2) underwent blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI) before and 2 hours after the ingestion of 1 g/kg of DC (70% cocoa). Renal tissue oxygenation was determined by the measurement of R2* maps on 4 coronal slices covering both kidneys. The mean R2* (= 1/T2*) values in the medulla and cortex were calculated, a low R2* indicating high tissue oxygenation. Eight participants also underwent BOLD-MRI at least 1 week later, before and 2 hours after the intake of 1 g/kg WC. Results: The mean medullary R2* was lower after DC intake compared to baseline (28.2 ± 1.3 s-1 vs. 29.6 ± 1.3 s-1, p = 0.04), whereas cortical and medullary R2* values did not change after WC intake. The change in medullary R2* correlated with the level of circulating (epi)catechines, metabolites of flavonoids (r = 0.74, p = 0.037), and was independent of plasma renin activity. Conclusion: This study suggests for the first time an increase of renal medullary oxygenation after intake of dark chocolate. Whether this is linked to flavonoid-induced changes in renal perfusion or oxygen consumption, and whether cocoa has potentially renoprotective properties, merits further study.
Resumo:
OBJECTIVES: Etravirine (ETV) is metabolized by cytochrome P450 (CYP) 3A, 2C9, and 2C19. Metabolites are glucuronidated by uridine diphosphate glucuronosyltransferases (UGT). To identify the potential impact of genetic and non-genetic factors involved in ETV metabolism, we carried out a two-step pharmacogenetics-based population pharmacokinetic study in HIV-1 infected individuals. MATERIALS AND METHODS: The study population included 144 individuals contributing 289 ETV plasma concentrations and four individuals contributing 23 ETV plasma concentrations collected in a rich sampling design. Genetic variants [n=125 single-nucleotide polymorphisms (SNPs)] in 34 genes with a predicted role in ETV metabolism were selected. A first step population pharmacokinetic model included non-genetic and known genetic factors (seven SNPs in CYP2C, one SNP in CYP3A5) as covariates. Post-hoc individual ETV clearance (CL) was used in a second (discovery) step, in which the effect of the remaining 98 SNPs in CYP3A, P450 cytochrome oxidoreductase (POR), nuclear receptor genes, and UGTs was investigated. RESULTS: A one-compartment model with zero-order absorption best characterized ETV pharmacokinetics. The average ETV CL was 41 (l/h) (CV 51.1%), the volume of distribution was 1325 l, and the mean absorption time was 1.2 h. The administration of darunavir/ritonavir or tenofovir was the only non-genetic covariate influencing ETV CL significantly, resulting in a 40% [95% confidence interval (CI): 13-69%] and a 42% (95% CI: 17-68%) increase in ETV CL, respectively. Carriers of rs4244285 (CYP2C19*2) had 23% (8-38%) lower ETV CL. Co-administered antiretroviral agents and genetic factors explained 16% of the variance in ETV concentrations. None of the SNPs in the discovery step influenced ETV CL. CONCLUSION: ETV concentrations are highly variable, and co-administered antiretroviral agents and genetic factors explained only a modest part of the interindividual variability in ETV elimination. Opposing effects of interacting drugs effectively abrogate genetic influences on ETV CL, and vice-versa.
Resumo:
1. Wood ants (Formica paralugubris) incorporate large amounts of solidified conifer resin into their nest, which reduces the density of many bacteria and fungi and protects the ants against some detrimental micro-organisms. By inducing an environment unfavourable to pathogens, the presence of resin may allow workers to reduce the use of their immune system. 2. The present study tested the hypothesis that the presence of resin decreases the immune activity of wood ants. Specifically, three components of the humoral immune defences of workers kept in resin-rich and resin-free experimental nests (antibacterial, lytic, and prophenoloxidase activities) were compared. 3. The presence of resin was associated with reduced bacterial and fungal densities in nest material and with a small decrease in worker antibacterial and lytic activities. The prophenoloxidase activity was very low in all workers and was not affected by the presence of resin. 4. These results suggest that collective medication with resin reduces pathogen pressure, which in turn decreases the use of the inducible part of the immune system. More generally, the use of plant secondary compounds might be an efficient and economical way to fight pathogens.
Resumo:
Glutaric aciduria type I (GA-I) is a cerebral organic aciduria caused by deficiency of glutaryl-Co-A dehydrogenase (GCDH). GCDH deficiency leads to accumulation of glutaric acid (GA) and 3-hydroxyglutaric acid (3-OHGA), two metabolites that are believed to be neurotoxic, in brain and body fluids. The disorder usually becomes clinically manifest during a catabolic state (e.g. intercurrent illness) with an acute encephalopathic crisis that results in striatal necrosis and in a permanent dystonic-dyskinetic movement disorder. The results of numerous in vitro and in vivo studies have pointed to three main mechanisms involved in the metabolite-mediated neuronal damage: excitotoxicity, impairment of energy metabolism and oxidative stress. There is evidence that during a metabolic crisis GA and its metabolites are produced endogenously in the CNS and accumulate because of limiting transport mechanisms across the blood-brain barrier. Despite extensive experimental work, the relative contribution of the proposed pathogenic mechanisms remains unclear and specific therapeutic approaches have yet to be developed. Here, we review the experimental evidence and try to delineate possible pathogenetic models and approaches for future studies.
Resumo:
Structural and regulatory genes involved in the synthesis of antimicrobial metabolites are essential for the biocontrol activity of fluorescent pseudomonads and, in principle, amenable to genetic engineering for strain improvement. An eventual large-scale release of such bacteria raises the question of whether such genes also contribute to the persistence and dissemination of the bacteria in soil ecosystems. Pseudomonas fluorescens wild-type strain CHA0 protects plants against a variety of fungal diseases and produces several antimicrobial metabolites. The regulatory gene gacA globally controls antibiotic production and is crucial for disease suppression in CHA0. This gene also regulates the production of extracellular protease and phospholipase. The contribution of gacA to survival and vertical translocation of CHA0 in soil microcosms of increasing complexity was studied in coinoculation experiments with the wild type and a gacA mutant which lacks antibiotics and some exoenzymes. Both strains were marked with spontaneous resistance to rifampin. In a closed system with sterile soil, strain CHA0 and the gacA mutant multiplied for several weeks, whereas these strains declined exponentially in nonsterile soil of different Swiss origins. The gacA mutant was less persistent in nonrhizosphere raw soil than was the wild type, but no competitive disadvantage when colonizing the rhizosphere and roots of wheat was found in the particular soil type and during the period studied. Vertical translocation was assessed after strains had been applied to undisturbed, long (60-cm) or short (20-cm) soil columns, both planted with wheat. A smaller number of cells of the gacA mutant than of the wild type were detected in the percolated water and in different depths of the soil column. Single-strain inoculation gave similar results in all microcosms tested. We conclude that mutation in a single regulatory gene involved in antibiotic and exoenzyme synthesis can affect the survival of P. fluorescens more profoundly in unplanted soil than in the rhizosphere.
Resumo:
Human biomonitoring is a widely used method in the assessment of occupational exposure to chemical substances and recommended biological limits are published periodically for interpretation and decision-making. However, it is increasingly recognized that a large variability is associated with biological monitoring, making interpretation less efficient than assumed. In order to improve the applicability of biological monitoring, specific factors responsible for this variability should be identified and their contribution quantified. Among these factors, age and sex are easily identifiable, and present knowledge about pharmaceutical chemicals suggests that they play an important role on the toxicokinetics of occupational chemical agents, and therefore on the biological monitoring results.The aim of the present research project was to assess the influence of age and sex on biological indicators corresponding to organic solvents. This has been done experimentally and by toxicokinetic computer simulation. Another purpose was to explore the effect of selected CYP2E1 polymorphisms on the toxicokinetic profile.Age differences were identified by numerical simulations using a general toxicokinetic model from a previous study which was applied to 14 chemicals, representing 21 specific biological entities, with, among others, toluene, phenol, lead and mercury. These models were runn with the modified parameters, indicating in some cases important differences due to age. The expected changes are mostly of the order of 10-20 %, but differences up to 50 % were observed in some cases. These differences appear to depend on the chemical and on the biological entity considered.Sex differences were quantified by controlled human exposures, which were carried out in a 12 m3 exposure chamber for three organic solvents separately: methyl ethyl ketone, 1-methoxy-2-propanol and 1,1,1-trichloroethane. The human volunteer groups were composed 12 of ten young men and fifteen young women, the latter subdivided into those with and without hormonal contraceptive. They were exposed during six hours at rest and at half of the threshold limit value. The kinetics of the parent compounds (organic volatiles) and their metabolite(s) were followed in blood, urine and expired air over time. Analyses of the solvent and their metabolites were performed by using headspace gas chromatography, CYP2E1 genotypes by using PCR-based RFLP methods. Experimental data were used to calibrate the toxicokinetic models developed for the three solvents. The results obtained for the different biomarkers of exposure mainly showed an effect on the urinary levels of several biomarkers among women due to the use of hormonal contraceptive, with an increase of about 50 % in the metabolism rate. The results also showed a difference due to the genotype CYP2E1*6, when exposed to methyl ethyl ketone, with a tendency to increase CYP2E1 activity when volunteers were carriers of the mutant allele. Simulations showed that it is possible to use simple toxicokinetic tools in order to predict internal exposure when exposed to organic solvents. Our study suggests that not only physiological differences but also exogenous sex hormones could influence CYP2E1 enzyme activity. The variability among the urinary biological indicators levels gives evidence of an interindividual susceptibility, an aspect that should have its place in the approaches for setting limits of occupational exposure.
Resumo:
Compartmental and physiologically based toxicokinetic modeling coupled with Monte Carlo simulation were used to quantify the impact of biological variability (physiological, biochemical, and anatomic parameters) on the values of a series of bio-indicators of metal and organic industrial chemical exposures. A variability extent index and the main parameters affecting biological indicators were identified. Results show a large diversity in interindividual variability for the different categories of biological indicators examined. Measurement of the unchanged substance in blood, alveolar air, or urine is much less variable than the measurement of metabolites, both in blood and urine. In most cases, the alveolar flow and cardiac output were identified as the prime parameters determining biological variability, thus suggesting the importance of workload intensity on absorbed dose for inhaled chemicals.
Resumo:
Pitfalls in organic acid analysis can originate from inadequate methodology, analytical interferences, in vivo interactions and from pre-analytical conditions which often are unknown to the specialized analytical laboratory. Among the latter, ingested food and additives, metabolites of food processing or medications have to be considered. Bacterial metabolites from the gastrointestinal or urogenital system or formed after sample collection can lead to pitfalls as well. An example of such a patient whose urinary metabolites mimic at first glance inherited propionic aciduria is described.
Resumo:
The global activator GacA, a highly conserved response regulator in Gram-negative bacteria, is required for the production of exoenzymes and secondary metabolites in Pseudomonas spp. The gacA gene of Pseudomonas aeruginosa PAO1 was isolated and its role in cell-density-dependent gene expression was characterized. Mutational inactivation of gacA resulted in delayed and reduced formation of the cell-density signal N-butyryl-L-homoserine lactone (BHL), of the cognate transcriptional activator RhIR (VsmR), and of the transcriptional activator LasR, which is known to positively regulate RhIR expression. Amplification of gacA on a multicopy plasmid caused precocious and enhanced production of BHL, RhIR and LasR. In parallel, the gacA gene dosage markedly influenced the BHL/RhIR-dependent formation of the cytotoxic compounds pyocyanin and cyanide and the exoenzyme lipase. However, the concentrations of another known cell-density signal of P. aeruginosa, N-oxododecanoyl-L-homoserine lactone, did not always match BHL concentrations. A model accounting for these observations places GacA function upstream of LasR and RhIR in the complex, cell-density-dependent signal-transduction pathway regulating several exoproducts and virulence factors of P. aeruginosa via BHL.
Resumo:
Glucose-dependent insulinotropic polypeptide (GIP) is a hormone secreted by the endocrine K-cells from the duodenum that stimulates glucose-induced insulin secretion. Here, we present the molecular characterization of the human pancreatic islet GIP receptor. cDNA clones for the GIP receptor were isolated from a human pancreatic islet cDNA library. They encoded two different forms of the receptor, which differed by a 27-amino acid insertion in the COOH-terminal cytoplasmic tail. The receptor protein sequence was 81% identical to that of the rat GIP receptor. When expressed in Chinese hamster lung fibroblasts, both forms of the receptor displayed high-affinity binding for GIP (180 and 600 pmol/l). GIP binding was displaced by < 20% by 1 mumol/l glucagon, glucagon-like peptide (GLP-I)(7-36) amide, vasoactive intestinal peptide, and secretin. However exendin-4 and exendin-(9-39) at 1 mumol/l displaced binding by approximately 70 and approximately 100% at 10 mumol/l. GIP binding to both forms of the receptor induced a dose-dependent increase in intracellular cAMP levels (EC50 values of 0.6-0.8 nmol/l) but no elevation of cytoplasmic calcium concentrations. Interestingly, both exendin-4 and exendin-(9-39) were antagonists of the receptor, inhibiting GIP-induced cAMP formation by up to 60% when present at a concentration of 10 mumol/l. Finally, the physical and genetic chromosomal localization of the receptor gene was determined to be on 19q13.3, close to the ApoC2 gene. These data will help study the physiology and pathophysiology of the human GIP receptor.
Resumo:
A depressive patient, a non-responder to trimipramine (TRI), was comedicated first with citalopram (CIT) and then with fluvoxamine (FLUV). Both the TRI-CIT and TRI-FLUV combination treatments led to a worsening of the depressive state and to the appearance of panic attacks. The addition of FLUV to TRI resulted in a twofold increase of the plasma levels of TRI and to a slight increase of its N-demethylated and 2-hydroxylated metabolites. These results suggest that the interaction between FLUV and TRI occurred at the level of cytochrome P-450IID6 and cytochrome P-450meph in this patient, phenotyped as an extensive metabolizer of both dextromethorphan and mephenytoin. The adverse effects were possibly due to (a) a pharmacokinetic interaction between CIT and FLUV with TRI and/or (b) alterations in serotonergic and/or dopaminergic neurotransmission.
Resumo:
Plasma and cerebrospinal fluid (CSF) concentrations of the enantiomers of citalopram (CIT), its N-demethylated metabolite demethylcitalopram (DCIT) and its deaminated metabolite citalopram propionic acid derivative (CIT-PROP) were measured in plasma and CSF in 22 depressed patients after a 4-week treatment with 40 mg/d citalopram, which was preceded by a 1-week washout period. CSF 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA) were measured at baseline and after the 4-week CIT medication period. Patients were assessed clinically, using the Hamilton Depression Rating Scale (21-item HAM-D): at baseline and then at weekly intervals. CSF concentrations of S-CIT and R-CIT were 10.6 +/- 4.3 and 20.9 +/- 6 ng/mL, respectively, and their CSF/plasma ratios were 52% +/- 9% and 48% +/- 6%, respectively. The CIT treatment resulted in a significant decrease (28%) of 5-HIAA (P < 0.0001) and a significant increase (41%) of HVA in the CSF. Multiple linear regression analyses were performed to identify the impact of plasma and CSF CIT enantiomers and its metabolites on CSF monoamine metabolites and clinical response. There were 10 responders as defined by a > or =50% decrease of the HAM-D score (DeltaHAM-D) after the 4-week treatment. DeltaHAM-D correlated (Spearman) significantly with CSF S-CIT (r = - 0.483, P < 0.05), CSF S-CIT-PROP (r = -0.543, P = 0.01) (a metabolite formed from CIT by monoamine oxidase [MAO]) and 5-HIAA decrease (Delta5-HIAA) (r = 0.572, P = 0.01). The demonstrated correlations between pharmacokinetic parameters and the clinical outcome as well as 5-HIAA changes indicate that monitoring of plasma S-CIT, CSF S-CIT and CSF S-CIT-PROP may be of clinical relevance.
Resumo:
Evolution of the neurochemical profile consisting of 19 metabolites after 30 mins of middle cerebral artery occlusion was longitudinally assessed at 3, 8 and 24 h in 6 to 8 microL volumes in the striatum using localized 1H-magnetic resonance spectroscopy at 14.1 T. Profound changes were detected as early as 3 h after ischemia, which include elevated lactate levels in the presence of significant glucose concentrations, decreases in glutamate and a transient twofold glutamine increase, likely to be linked to the excitotoxic release of glutamate and conversion into glial glutamine. Interestingly, decreases in N-acetyl-aspartate (NAA), as well as in taurine, exceeded those in neuronal glutamate, suggesting that the putative neuronal marker NAA is rather a sensitive marker of neuronal viability. With further ischemia evolution, additional, more profound concentration decreases were detected, reflecting a disruption of cellular functions. We conclude that early changes in markers of energy metabolism, glutamate excitotoxicity and neuronal viability can be detected with high precision non-invasively in mice after stroke. Such investigations should lead to a better understanding and insight into the sequential early changes in the brain parenchyma after ischemia, which could be used for identifying new targets for neuroprotection.