387 resultados para Underlying Tissue Pharmacokinetics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To study the combination of oligodeoxynucleotides (ODNs) intravitreous injection and saline transpalpebral iontophoresis on the delivery of ODNs to photoreceptors in the newborn rd1/rd1 mice. METHODS: Cathodal or anodal transpalpebral iontophoresis (1.43 mA/cm(2) for 5 min) was applied to eyes of postnatal day 7 (PN7) rd1/rd1 mice immediately before the intravitreous injection of ODNs. The effect of cathodal iontophoresis after ODNs injection was also evaluated. The influence of current intensity (0.5, 1.5, and 2.5 mA) was assayed with cathodal iontophoresis performed prior to ODNs injection. The duration of current-induced facilitation of ODNs delivery to photoreceptors was evaluated for 6 h following iontophoresis. One group of control eyes received cathodal iontophoresis prior to the intravitreous injection of phosphate buffered saline (PBS) or hexachlorofluorescein (Hex). The second control group received ODN or Hex intravitreous injection without iontophoresis. The penetration of fluorescent ODNs in the outer nuclear layer (ONL) was quantified by image analysis of the ONL fluorescence intensity on cryosection microphotographs. Integrity of ODN was assessed using acrylamide gel migration after its extraction from the retina of treated mice. The integrity of retinal structure, 1 and 24 h after iontophoresis, was analyzed using light and electron microscopy. RESULTS: Transpalpebral anodal or cathodal saline iontophoresis enhanced the penetration of ODNs in all retinal layers. Cathodal iontophoresis was more efficient than anodal iontophoresis in enhancing the tissue penetration of the injected ODN. Photoreceptor delivery of ODN was significantly higher when cathodal saline transpalpebral iontophoresis was applied prior than after the injection. The extent of enhanced tissue penetration decreased in parallel to the increased interval between iontophoresis application and the intravitreous injection. Current of 1.5 mA was safe and optimal for the delivery of ODNs to the ONL. One hour after iontophoresis followed by injection, ODN extracted from the retina of treated eyes remained intact. Histology and electron microscopy observations demonstrated that iontophoresis using the optimal parameters did not induce any permanent tissue alterations or structure damage. CONCLUSIONS: Saline transpalpebral iontophoresis facilitates the penetration of injected ODNs in photoreceptors for at least 3 h. This method may be considered for photoreceptor targeted gene therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The specific effects of radiosurgery on brain tumor tissue are not well understood. We review several approaches that have been used to address this issue. Correlating the radiobiology of radiosurgery with the radioclinical outcome may help to understand these tissue changes. In vivo imaging investigations are usually performed with MRI, but the use of functional and metabolic imaging, such MR spectroscopy, positron emission tomography or single-photon emission computed tomography may provide additional information on the effects of radiosurgery. Finally, histological observations represent an invaluable source of information, when systematically analyzed in their clinical context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: It is accepted that a woman's lifetime risk of developing breast cancer after menopause is reduced by early full term pregnancy and multiparity. This phenomenon is thought to be associated with the development and differentiation of the breast during pregnancy. METHODS: In order to understand the underlying molecular mechanisms of pregnancy induced breast cancer protection, we profiled and compared the transcriptomes of normal breast tissue biopsies from 71 parous (P) and 42 nulliparous (NP) healthy postmenopausal women using Affymetrix Human Genome U133 Plus 2.0 arrays. To validate the results, we performed real time PCR and immunohistochemistry. RESULTS: We identified 305 differentially expressed probesets (208 distinct genes). Of these, 267 probesets were up- and 38 down-regulated in parous breast samples; bioinformatics analysis using gene ontology enrichment revealed that up-regulated genes in the parous breast represented biological processes involving differentiation and development, anchoring of epithelial cells to the basement membrane, hemidesmosome and cell-substrate junction assembly, mRNA and RNA metabolic processes and RNA splicing machinery. The down-regulated genes represented biological processes that comprised cell proliferation, regulation of IGF-like growth factor receptor signaling, somatic stem cell maintenance, muscle cell differentiation and apoptosis. CONCLUSIONS: This study suggests that the differentiation of the breast imprints a genomic signature that is centered in the mRNA processing reactome. These findings indicate that pregnancy may induce a safeguard mechanism at post-transcriptional level that maintains the fidelity of the transcriptional process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The circadian timekeeping mechanism adapts physiology to the 24-hour light/dark cycle. However, how the outputs of the circadian clock in different peripheral tissues communicate and synchronize each other is still not fully understood. The circadian clock has been implicated in the regulation of numerous processes, including metabolism, the cell cycle, cell differentiation, immune responses, redox homeostasis, and tissue repair. Accordingly, perturbation of the machinery that generates circadian rhythms is associated with metabolic disorders, premature ageing, and various diseases including cancer. Importantly, it is now possible to target circadian rhythms through systemic or local delivery of time cues or compounds. Here, we summarize recent findings in peripheral tissues that link the circadian clock machinery to tissue-specific functions and diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neural tissue has historically been regarded as having poor regenerative capacity but recent advances in the growing fields of tissue engineering and regenerative medicine have opened new hopes for the treatment of nerve injuries and neurodegenerative disorders. Adipose tissue has been shown to contain a large quantity of adult stem cells (ASC). These cells can be easily harvested with low associated morbidity and because of their potential to differentiate into multiple cell types, their use has been suggested for a wide variety of therapeutic applications. In this review we examine the evidence indicating that ASC can stimulate nerve regeneration by both undergoing neural differentiation and through the release of a range of growth factors. We also discuss some of the issues that need to be addressed before ASC can be developed as an effective cellular therapy for the treatment of neural tissue disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ever since the pre-molecular era, the birth of new genes with novel functions has been considered to be a major contributor to adaptive evolutionary innovation. Here, I review the origin and evolution of new genes and their functions in eukaryotes, an area of research that has made rapid progress in the past decade thanks to the genomics revolution. Indeed, recent work has provided initial whole-genome views of the different types of new genes for a large number of different organisms. The array of mechanisms underlying the origin of new genes is compelling, extending way beyond the traditionally well-studied source of gene duplication. Thus, it was shown that novel genes also regularly arose from messenger RNAs of ancestral genes, protein-coding genes metamorphosed into new RNA genes, genomic parasites were co-opted as new genes, and that both protein and RNA genes were composed from scratch (i.e., from previously nonfunctional sequences). These mechanisms then also contributed to the formation of numerous novel chimeric gene structures. Detailed functional investigations uncovered different evolutionary pathways that led to the emergence of novel functions from these newly minted sequences and, with respect to animals, attributed a potentially important role to one specific tissue--the testis--in the process of gene birth. Remarkably, these studies also demonstrated that novel genes of the various types significantly impacted the evolution of cellular, physiological, morphological, behavioral, and reproductive phenotypic traits. Consequently, it is now firmly established that new genes have indeed been major contributors to the origin of adaptive evolutionary novelties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies showed a fetal sheep liver extract (FSLE), in association with LPS, injected into aged (>20 months) mice reversed the altered polarization (increased IL-4 and IL-10 with decreased IL-2 and IFN-gamma) in cytokine production seen from ConA stimulated lymphoid cells of those mice. Aged mice show a >60% decline in numbers and suppressive function of both CD4(+)CD25(+)Foxp3(+)Treg and so-called Tr3 (CD4(+)TGFbeta(+)). Their number/function is restored to levels seen in control (8-week-old) mice by FSLE. We have reported at length on the ability of a novel pair of immunoregulatory molecules, members of the TREM family, namely CD200:CD200R, to control development of dendritic cells (DCs) which themselves regulate production of Foxp3(+) Treg. The latter express a distinct subset of TLRs which control their function. We report that a feature of the altered Treg expression following combined treatment with FSLE and monophosphoryl lipid A, MPLA (a bioactive component of lipid A of LPS) is the altered gene expression both of distinct subsets of TLRs and of CD200Rs. We speculate that this may represent one of the mechanisms by which FSLE and MPLA alter immunity in aged mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MicroRNAs (miRs) are involved in the pathogenesis of several neoplasms; however, there are no data on their expression patterns and possible roles in adrenocortical tumors. Our objective was to study adrenocortical tumors by an integrative bioinformatics analysis involving miR and transcriptomics profiling, pathway analysis, and a novel, tissue-specific miR target prediction approach. Thirty-six tissue samples including normal adrenocortical tissues, benign adenomas, and adrenocortical carcinomas (ACC) were studied by simultaneous miR and mRNA profiling. A novel data-processing software was used to identify all predicted miR-mRNA interactions retrieved from PicTar, TargetScan, and miRBase. Tissue-specific target prediction was achieved by filtering out mRNAs with undetectable expression and searching for mRNA targets with inverse expression alterations as their regulatory miRs. Target sets and significant microarray data were subjected to Ingenuity Pathway Analysis. Six miRs with significantly different expression were found. miR-184 and miR-503 showed significantly higher, whereas miR-511 and miR-214 showed significantly lower expression in ACCs than in other groups. Expression of miR-210 was significantly lower in cortisol-secreting adenomas than in ACCs. By calculating the difference between dCT(miR-511) and dCT(miR-503) (delta cycle threshold), ACCs could be distinguished from benign adenomas with high sensitivity and specificity. Pathway analysis revealed the possible involvement of G2/M checkpoint damage in ACC pathogenesis. To our knowledge, this is the first report describing miR expression patterns and pathway analysis in sporadic adrenocortical tumors. miR biomarkers may be helpful for the diagnosis of adrenocortical malignancy. This tissue-specific target prediction approach may be used in other tumors too.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Renal excretion of water and major electrolytes exhibits a significant circadian rhythm. This functional periodicity is believed to result, at least in part, from circadian changes in secretion/reabsorption capacities of the distal nephron and collecting ducts. Here, we studied the molecular mechanisms underlying circadian rhythms in the distal nephron segments, i.e., distal convoluted tubule (DCT) and connecting tubule (CNT) and the cortical collecting duct (CCD). Temporal expression analysis performed on microdissected mouse DCT/CNT or CCD revealed a marked circadian rhythmicity in the expression of a large number of genes crucially involved in various homeostatic functions of the kidney. This analysis also revealed that both DCT/CNT and CCD possess an intrinsic circadian timing system characterized by robust oscillations in the expression of circadian core clock genes (clock, bma11, npas2, per, cry, nr1d1) and clock-controlled Par bZip transcriptional factors dbp, hlf, and tef. The clock knockout mice or mice devoid of dbp/hlf/tef (triple knockout) exhibit significant changes in renal expression of several key regulators of water or sodium balance (vasopressin V2 receptor, aquaporin-2, aquaporin-4, alphaENaC). Functionally, the loss of clock leads to a complex phenotype characterized by partial diabetes insipidus, dysregulation of sodium excretion rhythms, and a significant decrease in blood pressure. Collectively, this study uncovers a major role of molecular clock in renal function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background And Objectives: Isolated limb perfusion with TNF-alpha and melphalan (TM-ILP) is a limb salvage therapy for non-resectable soft tissue sarcomas (STS) of the extremities. It is indicated for patients for whom amputation or debilitating surgery is the only alternative. It can be used either as an exclusive therapy (in palliation) or as a neo-adjuvant treatment, followed by marginal resection of tumor remnants with minimal functional impairment. Methods: Between February 1992 and March 2006, 57 TM-ILPs were performed on 51 patients with 88% high grade and 84% advanced stage tumors. Results: Mean follow-up is 38.9 months (4-159, median 22 months). Twenty-one percent patients had significant early complications, with 3 major re-operations, and 23% suffered long-lasting complications. Complete response was observed in 25%, partial response in 42%, stable disease in 14% and progressive disease in 14%. Resection of the tumor remnants was possible in 65%. A complementary treatment was necessary in 31%, mostly radiation therapy. A local recurrence was observed in 35%, after a mean of 20.3 months (2-78), and distant relapse was seen in 45%, after a mean of 13.4 months (5-196). Mean Disease-free survival was 14.9 months, and overall 5-year-survival 43.5%. Amputation rate at 5 years was 24%. Conclusions: TM-ILP is a conservative treatment with a high complications rate, but it can be successful even for the most severe STS of extremities. As a consequence the limb can be spared from amputation or debilitating surgery on the long term in about 75% of patients

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: A combination of radioimmunotherapy (RIT) and radiotherapy (RT) should allow one to increase the dose of radiation targeting a particular tumour without the concomitant increase of toxic side effects. This might be obtained if the dose limiting side effect of each individual radiation therapy concerned different organs. METHODS: Six patients with limited liver metastatic disease from colorectal cancer were treated with 6.9 GBq (range 4.7 to 8.4 GBq) 131I-labelled anti-CEA MAb F(ab')2 fragments combined with 20 Gy RT to the liver. Both treatments were given in close association, according to timing schedules evaluated in animals that gave the best results. RESULTS: Reversible bone marrow and liver toxicity was observed in 6 and 5 patients, respectively. Three patients who first received 20 Gy RT to the liver, showed a significant platelet drop upon completion of RT. Repeat computerized tomography (CT) after 2 months showed a minor response in 1 patient and stable disease in 3 patients. CONCLUSION: The study shows potential ways of combining RIT and RT, suggesting that this combination is feasible for the treatment of liver metastases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The process of epidermal differentiation involves proliferation, differentiation, migration and maturation of keratinocytes to form an impermeable barrier against water loss and outside environment. It is controlled by highly balanced regulatory machinery, involving many molecules that are still under investigation.Homeobox proteins are involved in body patterning and morphogenesis of organs and are studied as potentially good candidates to regulate this process. In the first project we investigated the role of a protein named HOP which belongs to a group of homeobox proteins. Even if HOP is a small protein almost completely composed of the homeodomain and without DNA binding capacity, it is considered as transcriptional regulator in different tissues. HOP interacts with serum response factor (SRF) and histone deacetylase type 2 (HDAC2). By microarray analysis we found that HOP expression increases in cultured human primary keratinocytes (NHK) which undergo calcium-induced differentiation. HOP protein was localized in granular layer of the epidermis of healthy individuals. Lack of HOP was demonstrated in psoriatic lesions, whereas a strong expression was demonstrated in the lesional skin of patients affected with lichen planus (LP). Since LP is characterized by hypergranulosis while psoriatic lesions by progressive lack of the granular layer, the obtained data indicated that HOP might have a potential function in granular layer of epidermis. To investigate HOP function, we inhibited its expression by using HOP specific StealthRNAi and we overexpressed HOP using lentiviral vectors in differentiating NHK. The conclusion of both experiments indicated that HOP positively regulates the expression of late differentiation markers, such as profilaggrin, loricrin and transglutaminase 1. The in vitro data were next confirmed in vivo using HOP knockout mouse model.The second part of my study involved analysis of mechanisms underlying the pathogenesis of epidermolytic hyperkeratosis (EHK). EHK is a genetic disorder characterized by erythema, skin blistering, keratinocyte hyperproliferation and hyperkeratosis. EHK is caused by mutations in keratin 1 or 10 (K1, K10) which are major structural proteins of differentiated keratinocytes and participate in the cellular scaffold formation. To investigate how the structural proteins carrying mutations alter cellular signaling, we established an in vitro model for EHK by overexpression of one of the most common K10 mutations reported so far (K10R156H), in primary human keratinocytes. In order to mimic the in vivo situation, mutated keratinocytes growing on silicone membranes were subjected to mechanical stretch. We observed strong collapse of KIF in K10R156H keratinocytes when subjected to stretch for 30 minutes. Our data demonstrated stronger activation of p38, a member of MAPK stress signaling pathways, in K10R156H when compared to control cells. We demonstrated also that K10R156H keratinocytes showed an induction of TNF-α and RANTES release in response to stretch.Taken together these studies characterize a novel regulator of epidermal differentiation - HOP and demonstrate new aspects implicated in the pathogenesis of EHK.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé La structure, ou l'architecture, des êtres vivants définit le cadre dans lequel la physique de la vie s'accomplit. La connaissance de cette structure dans ses moindres détails est un but essentiel de la biologie. Son étude est toutefois entravée par des limitations techniques. Malgré son potentiel théorique, la microscopie électronique n'atteint pas une résolution atomique lorsqu'elle est appliquée ä la matièxe biologique. Cela est dû en grande partie au fait qu'elle contient beaucoup d'eau qui ne résiste pas au vide du microscope. Elle doit donc être déshydratée avant d'être introduite dans un microscope conventionnel. Des artéfacts d'agrégation en découlent inévitablement. La cryo-microscopie électronique des sections vitreuses (CEMOVIS) a ëté développée afin de résoudre cela. Les spécimens sont vitrifiés, c.-à-d. que leur eau est immobilisée sans cristalliser par le froid. Ils sont ensuite coupés en sections ultrafines et celles-ci sont observées à basse température. Les spécimens sont donc observés sous forme hydratée et non fixée; ils sont proches de leur état natif. Durant longtemps, CEMOVIS était très difficile à exécuter mais ce n'est plus le cas. Durant cette thèse, CEMOVIS a été appliqué à différents spécimens. La synapse du système nerveux central a été étudiée. La présence dans la fente synaptique d'une forte densité de molécules organisées de manière périodique a été démontrée. Des particules luminales ont été trouvées dans Ies microtubules cérébraux. Les microtubules ont servi d'objets-test et ont permis de démontrer que des détails moléculaires de l'ordre du nm sont préservés. La compréhension de la structure de l'enveloppe cellulaire des bactéries Grampositives aété améliorée. Nos observations ont abouti à l'élaboration d'un nouveau modèle hypothétique de la synthèse de la paroi. Nous avons aussi focalisé notre attention sur le nucléoïde bactérien et cela a suscité un modèle de la fonction des différents états structuraux du nucléoïde. En conclusion, cette thèse a démontré que CEMOVIS est une excellente méthode poux étudier la structure d'échantillons biologiques à haute résolution. L'étude de la structure de divers aspects des êtres vivants a évoqué des hypothèses quant à la compréhension de leur fonctionnement. Summary The structure, or the architecture, of living beings defines the framework in which the physics of life takes place. Understanding it in its finest details is an essential goal of biology. Its study is however hampered by technical limitations. Despite its theoretical potential, electron microscopy cannot resolve individual atoms in biological matter. This is in great part due to the fact. that it contains a lot of water that cannot stand the vacuum of the microscope. It must therefore be dehydrated before being introduced in a conventional mìcroscope. Aggregation artefacts unavoidably happen. Cryo-electron microscopy of vitreous sections (CEMOVIS) has been developed to solve this problem. Specimens are vitrified, i.e. they are rapidly cooled and their water is immobilised without crystallising by the cold. They are then. sectioned in ultrathin slices, which are observed at low temperatures. Specimens are therefore observed in hydrated and unfixed form; they are close to their native state. For a long time, CEMOVIS was extremely tedious but this is not the case anymore. During this thesis, CEMOVIS was applied to different specimens. Synapse of central nervous system was studied. A high density of periodically-organised molecules was shown in the synaptic cleft. Luminal particles were found in brain microtubules. Microtubules, used as test specimen, permitted to demonstrate that molecular details of the order of nm .are preserved. The understanding of the structure of cell envelope of Gram-positive bacteria was improved. Our observations led to the elaboration of a new hypothetic model of cell wall synthesis. We also focused our attention on bacterial nucleoids and this also gave rise to a functional model of nucleoid structural states. In conclusion, this thesis demonstrated that CEMOVIS is an excellent method for studying the structure of bìologìcal specimens at high resolution. The study of the structure of various aspects of living beings evoked hypothesis for their functioning.