415 resultados para SPECIFIC GENOTYPE
Resumo:
Résumé : Un nombre croissant de cas de malaria chez les voyageurs et migrants a été rapporté. Bien que l'analyse microscopique des frottis sanguins reste traditionnellement l'outil diagnostic de référence, sa fiabilité dépend considérablement de l'expertise de l'examinateur, pouvant elle-même faire défaut sous nos latitudes. Une PCR multiplex en temps réel a donc été développée en vue d'une standardisation du diagnostic. Un ensemble d'amorces génériques ciblant une région hautement conservée du gène d'ARN ribosomial 18S du genre Plasmodium a tout d'abord été conçu, dont le polymorphisme du produit d'amplification semblait suffisant pour créer quatre sondes spécifiques à l'espèce P. falciparum, P. malariae, P. vivax et P. ovale. Ces sondes utilisées en PCR en temps réel se sont révélées capables de détecter une seule copie de plasmide de P. falciparum, P. malariae, P. vivax et P. ovale spécifiquement. La même sensibilité a été obtenue avec une sonde de screening pouvant détecter les quatre espèces. Quatre-vingt-dix-sept échantillons de sang ont ensuite été testés, dont on a comparé la microscopie et la PCR en temps réel pour 66 (60 patients) d'entre eux. Ces deux méthodes ont montré une concordance globale de 86% pour la détection de plasmodia. Les résultats discordants ont été réévalués grâce à des données cliniques, une deuxième expertise microscopique et moléculaire (laboratoire de Genève et de l'Institut Suisse Tropical de Bâle), ainsi qu'à l'aide du séquençage. Cette nouvelle analyse s'est prononcé en faveur de la méthode moléculaire pour tous les neuf résultats discordants. Sur les 31 résultats positifs par les deux méthodes, la même réévaluation a pu donner raison 8 fois sur 9 à la PCR en temps réel sur le plan de l'identification de l'espèce plasmodiale. Les 31 autres échantillons ont été analysés pour le suivi de sept patients sous traitement antimalarique. Il a été observé une baisse rapide du nombre de parasites mesurée par la PCR en temps réel chez six des sept patients, baisse correspondant à la parasitémie déterminée microscopiquement. Ceci suggère ainsi le rôle potentiel de la PCR en temps réel dans le suivi thérapeutique des patients traités par antipaludéens. Abstract : There have been reports of increasing numbers of cases of malaria among migrants and travelers. Although microscopic examination of blood smears remains the "gold standard" in diagnosis, this method suffers from insufficient sensitivity and requires considerable expertise. To improve diagnosis, a multiplex real-time PCR was developed. One set of generic primers targeting a highly conserved region of the 18S rRNA gene of the genus Plasmodium was designed; the primer set was polymorphic enough internally to design four species-specific probes for P. falciparum, P. vivax, P. malarie, and P. ovale. Real-time PCR with species-specific probes detected one plasmid copy of P. falciparum, P. vivax, P. malariae, and P. ovale specifically. The same sensitivity was achieved for all species with real-time PCR with the 18S screening probe. Ninety-seven blood samples were investigated. For 66 of them (60 patients), microscopy and real-time PCR results were compared and had a crude agreement of 86% for the detection of plasmodia. Discordant results were reevaluated with clinical, molecular, and sequencing data to resolve them. All nine discordances between 18S screening PCR and microscopy were resolved in favor of the molecular method, as were eight of nine discordances at the species level for the species-specific PCR among the 31 samples positive by both methods. The other 31 blood samples were tested to monitor the antimalaria treatment in seven patients. The number of parasites measured by real-time PCR fell rapidly for six out of seven patients in parallel to parasitemia determined microscopically. This suggests a role of quantitative PCR for the monitoring of patients receiving antimalaria therapy.
Resumo:
Summary. Hepatitis C viral (HCV) kinetics after initiation of interferon-based therapy provide valuable insights for understanding virus pathogenesis, evaluating treatment antiviral effectiveness and predicting treatment outcome. Adverse effects of liver fibrosis and steatosis on sustained virological response have been frequently reported, yet their impacts on the early viral kinetics remain unclear. In this study, associations between histology status and early viral kinetics were assessed in 149 HCV genotype 1-infected patients treated with pegylated interferon alfa-2a and ribavirin (DITTO trial). In multivariate analyses adjusted for critical factors such as IL28B genotype and baseline viral load, presence of significant fibrosis (Ishak stage > 2) was found to independently reduce the odds of achieving an initial reduction (calculated from day 0 to day 4) in HCV RNA of ≥2 logIU/mL (adjusted OR 0.03, P = 0.004) but was not associated with the second-phase slope of viral decline (calculated from day 8 to day 29). On the contrary, presence of liver steatosis was an independent risk factor for not having a rapid second-phase slope, that is, ≥0.3 logIU/mL/week (adjusted OR 0.22, P = 0.012) but was not associated with the first-phase decline. Viral kinetic modelling theory suggests that significant fibrosis primarily impairs the treatment antiviral effectiveness in blocking viral production by infected cells, whereas the presence of steatosis is associated with a lower net loss of infected cells. Further studies will be necessary to identify the biological mechanisms underlain by these findings.
Comparison of Seegene Anyplex II HPV28 with the PGMY-CHUV Assay for Human Papillomavirus Genotyping.
Resumo:
The Anyplex II HPV28 (H28; Seegene) is a new semiquantitative real-time multiplex PCR assay for screening and genotyping 28 human papillomaviruses (HPV) in only 2 reaction wells. H28 was compared to the PGMY-CHUV assay (PG) with 309 archival DNA samples from cervical smears collected over 8 years in our laboratory. H28 and PG were fully concordant at the genotypic level on 228 (73.8%) out of 309 samples: 27 HPV negative and 201 HPV positive. The 201 fully concordant positive samples corresponded to single infections (n = 145) and to multiple infections (2 genotypes, n = 38; 3 to 5 genotypes, n = 18). The remaining 81 samples (26.2%) were either partially concordant (n = 64, 20.7%) or fully discordant (n = 17, 5.5%). While genotype-specific agreement was nearly perfect (κ = 0.877), HPV51 was significantly less well detected by H28 and the converse was observed for HPV40, -42, -54, and -68. Sequencing of PG amplicons confirmed HPV51 discordants and suggested the involvement of a possibly local HPV51 subtype. Mismatches in the PGMY09 primers to HPV68a explained most of the HPV68 discordants, confirming the specificity of H28 toward HPV68. With PG as a reference, the sensitivity and specificity of H28 were 93.4% and 99.0%, respectively. Considering H28 as a reference, the sensitivity and specificity of PG were 83.8% and 99.6%, respectively. H28 is a very sensitive and specific HPV genotyping assay suitable for research and clinical use as an adjunct to a clinically validated test. H28 semiquantitative readout ought to be evaluated for primary cervical cancer screening.
Resumo:
Current nuclear medicine techniques for the localization of inflammatory processes are based on injection of 111In labelled autologous granulocytes which need to be isolated and radiolabelled in vitro before reinjection. A new technique is presented here that obviates the need for cell isolation by the direct intravenous injection of a granulocyte specific 123I labelled monoclonal antibody. In this publication the basic parameters of the antibody granulocyte interaction are described. Antibody binding does not inhibit vital functions of the granulocytes, such as chemotaxis and superoxide generation. Scatchard analysis of binding data reveals an apparent affinity of the antibody for granulocytes of 6.8 X 10(9) l/mol and approximately 7.1 X 10(4) binding sites per cell. Due to the high specificity of the antibody, the only expected interference is from CEA producing tumors.
Resumo:
The Baldwin effect can be observed if phenotypic learning influences the evolutionary fitness of individuals, which can in turn accelerate or decelerate evolutionary change. Evidence for both learning-induced acceleration and deceleration can be found in the literature. Although the results for both outcomes were supported by specific mathematical or simulation models, no general predictions have been achieved so far. Here we propose a general framework to predict whether evolution benefits from learning or not. It is formulated in terms of the gain function, which quantifies the proportional change of fitness due to learning depending on the genotype value. With an inductive proof we show that a positive gain-function derivative implies that learning accelerates evolution, and a negative one implies deceleration under the condition that the population is distributed on a monotonic part of the fitness landscape. We show that the gain-function framework explains the results of several specific simulation models. We also use the gain-function framework to shed some light on the results of a recent biological experiment with fruit flies.
Resumo:
Acid-sensing ion channels (ASICs) are neuronal Na(+)-selective channels that are transiently activated by extracellular acidification. ASICs are involved in fear and anxiety, learning, neurodegeneration after ischemic stroke, and pain sensation. The small molecule 2-guanidine-4-methylquinazoline (GMQ) was recently shown to open ASIC3 at physiological pH. We have investigated the mechanisms underlying this effect and the possibility that GMQ may alter the function of other ASICs besides ASIC3. GMQ shifts the pH dependence of activation to more acidic pH in ASIC1a and ASIC1b, whereas in ASIC3 this shift goes in the opposite direction and is accompanied by a decrease in its steepness. GMQ also induces an acidic shift of the pH dependence of inactivation of ASIC1a, -1b, -2a, and -3. As a consequence, the activation and inactivation curves of ASIC3 but not other ASICs overlap in the presence of GMQ at pH 7.4, thereby creating a window current. At concentrations >1 mm, GMQ decreases maximal peak currents by reducing the unitary current amplitude. Mutation of residue Glu-79 in the palm domain of ASIC3, previously shown to be critical for channel opening by GMQ, disrupted the GMQ effects on inactivation but not activation. This suggests that this residue is involved in the consequences of GMQ binding rather than in the binding interaction itself. This study describes the mechanisms underlying the effects of a novel class of ligands that modulate the function of all ASICs as well as activate ASIC3 at physiological pH.
Resumo:
We previously used a single nucleotide polymorphism (SNP) in the CHRNA5-A3-B4 gene cluster associated with heaviness of smoking within smokers to confirm the causal effect of smoking in reducing body mass index (BMI) in a Mendelian randomisation analysis. While seeking to extend these findings in a larger sample we found that this SNP is associated with 0.74% lower body mass index (BMI) per minor allele in current smokers (95% CI -0.97 to -0.51, P = 2.00 × 10(-10)), but also unexpectedly found that it was associated with 0.35% higher BMI in never smokers (95% CI +0.18 to +0.52, P = 6.38 × 10(-5)). An interaction test confirmed that these estimates differed from each other (P = 4.95 × 10(-13)). This difference in effects suggests the variant influences BMI both via pathways unrelated to smoking, and via the weight-reducing effects of smoking. It would therefore be essentially undetectable in an unstratified genome-wide association study of BMI, given the opposite association with BMI in never and current smokers. This demonstrates that novel associations may be obscured by hidden population sub-structure. Stratification on well-characterized environmental factors known to impact on health outcomes may therefore reveal novel genetic associations.
Resumo:
BACKGROUND AND STUDY AIMS: This was an observational, non-interventional, multicenter, phase IV study, in patients with genotype 1/4/5/6 chronic hepatitis C (CHC). The primary objectives were to evaluate SVR in patients with no or minimal fibrosis (METAVIR F0-F1) versus well established fibrosis (F2-F4), and to estimate response on Weeks 12, 24 and 48 on treatment in previously untreated patients with genotypes 1/4/5/6 CHC. PATIENTS AND METHODS: 538 patients treated with pegylated interferon alfa 2b 1.5 mcg/kg in combination with ribavirin 800-1200 mg/day were enrolled in 55 sites in Belgium and Luxembourg, 505 being considered for the analysis. 40% of the patients were female and 60% male, the average age was 47.5 years, 10.5% were 65 or older. RESULTS: SVR was observed in 35% of the patients, EVR in 68%, of which pEVR in 33% and cEVR in 35%. SVR was observed in 43% of the low fibrosis group (F0, F1) and 30% of the high fibrosis group (F2, F3, F4) (p = 0.005). SVR rates were 34% for genotype 1, 37% for genotype 4, and 47% for genotype 5 (NS). Multivariate analysis showed that EVR and baseline METAVIR score are independent prognostic factors for SVR. CONCLUSIONS: This trial confirms that fibrosis stage and early viral response are the most important key-factors to predict sustained response, suggesting that the earlier patients are treated, the better the outcome. Non-invasive techniques enable us to closely monitor progression of fibrosis, allowing a better selection of patients for antiviral treatment in the DAA-era.
Resumo:
The factors responsible for the phenotypic heterogeneity of memory CD4 T cells are unclear. In the present study, we have identified a third population of memory CD4 T cells characterized as CD45RA(+)CCR7(-) that, based on its replication history and the homeostatic proliferative capacity, was at an advanced stage of differentiation. Three different phenotypic patterns of memory CD4 T cell responses were delineated under different conditions of antigen (Ag) persistence and load using CD45RA and CCR7 as markers of memory T cells. Mono-phenotypic CD45RA(-)CCR7(+) or CD45RA(-)CCR7(-) CD4 T cell responses were associated with conditions of Ag clearance (tetanus toxoid-specific CD4 T cell response) or Ag persistence and high load (chronic HIV-1 and primary CMV infections), respectively. Multi-phenotypic CD45RA(-)CCR7(+), CD45RA(-)CCR7(-) and CD45RA(+)CCR7(-) CD4 T cell responses were associated with protracted Ag exposure and low load (chronic CMV, EBV and HSV infections and HIV-1 infection in long-term nonprogressors). The mono-phenotypic CD45RA(-)CCR7(+) response was typical of central memory (T(CM)) IL-2-secreting CD4 T cells, the mono-phenotypic CD45RA(-)CCR7(-) response of effector memory (T(EM)) IFN-gamma-secreting CD4 T cells and the multi-phenotypic response of both IL-2- and IFN-gamma-secreting cells. The present results indicate that the heterogeneity of different Ag-specific CD4 T cell responses is regulated by Ag exposure and Ag load.
Resumo:
In hybrid zones, endogenous counter-selection of hybrids is usually first expressed as reduced fertility or viability in hybrids of the heterogametic sex, a mechanism known as Haldane's rule. This phenomenon often leads to a differential of gene flow between sex-linked markers. Here, we address the possibility of a differential gene flow for Y chromosome, mtDNA and autosomal markers across the hybrid zone between the genetically and chromosomally well-differentiated species Sorex antinorii and Sorex araneus race Vaud. Intermarker comparison clearly revealed coincidental centre and very abrupt clines for all three types of markers. The overall level of genetic differentiation between the two species must be strong enough to hinder asymmetric introgression. Cyto-nuclear mismatches were also observed in the centre of hybrid zone. The significantly lower number of mismatches observed in males than in females possibly results from Y chromosome-mtDNA interactions. Results are compared with those previously reported in another hybrid zone between S. antinori and S. araneus race Cordon.
Resumo:
Glutathione (GSH), a major redox regulator and anti-oxidant, is decreased in cerebrospinal fluid and prefrontal cortex of schizophrenia patients. The gene of the key GSH-synthesizing enzyme, glutamate-cysteine ligase, modifier (GCLM) subunit, is associated with schizophrenia, suggesting that the deficit in the GSH system is of genetic origin. Using the GCLM knock-out (KO) mouse model with 60% decreased brain GSH levels, we have shown that redox dysregulation results in abnormal brain morphology and function. Current theory holds that schizophrenia is a developmental disease involving progressive anatomical and functional brain pathology. Here, we used GCLM KO mice to investigate the impact of a genetically dysregulated redox system on the neurochemical profile of the developing brain. The anterior and posterior cortical neurochemical profile of male and female GCLM KO, heterozygous and wildtype mice was determined by localised in vivo 1H NMR spectroscopy at 14.1 T (Varian/Magnex spectrometer) on post-natal days 10, 20, 30, 60 and 90. We show, for the first time, (1) that high quality 1H NMR spectra can be acquired from early developing mouse brains and (2) that recurrent anaesthesia by itself when administered at the same developmental days has no adverse effects on brain metabolites nor on adult behaviour. (3) Most importantly, our results reveal genotype and age specific changes for a number of metabolites revealing insight into normal brain development and about the impact of genetic GSH dysregulation.
Resumo:
Elevated serum ferritin levels may reflect a systemic inflammatory state as well as increased iron storage, both of which may contribute to an unfavorable outcome of chronic hepatitis C (CHC). We therefore performed a comprehensive analysis of the role of serum ferritin and its genetic determinants in the pathogenesis and treatment of CHC. To this end, serum ferritin levels at baseline of therapy with pegylated interferon-alpha and ribavirin or before biopsy were correlated with clinical and histological features of chronic hepatitis C virus (HCV) infection, including necroinflammatory activity (N = 970), fibrosis (N = 980), steatosis (N = 886), and response to treatment (N = 876). The association between high serum ferritin levels (> median) and the endpoints was assessed by logistic regression. Moreover, a candidate gene as well as a genome-wide association study of serum ferritin were performed. We found that serum ferritin ≥ the sex-specific median was one of the strongest pretreatment predictors of treatment failure (univariate P < 0.0001, odds ratio [OR] = 0.45, 95% confidence interval [CI] = 0.34-0.60). This association remained highly significant in a multivariate analysis (P = 0.0002, OR = 0.35, 95% CI = 0.20-0.61), with an OR comparable to that of interleukin (IL)28B genotype. When patients with the unfavorable IL28B genotypes were stratified according to high versus low ferritin levels, SVR rates differed by > 30% in both HCV genotype 1- and genotype 3-infected patients (P < 0.001). Serum ferritin levels were also independently associated with severe liver fibrosis (P < 0.0001, OR = 2.67, 95% CI = 1.68-4.25) and steatosis (P = 0.002, OR = 2.29, 95% CI = 1.35-3.91), but not with necroinflammatory activity (P = 0.3). Genetic variations had only a limited impact on serum ferritin levels. Conclusion: In patients with CHC, elevated serum ferritin levels are independently associated with advanced liver fibrosis, hepatic steatosis, and poor response to interferon-alpha-based therapy.