267 resultados para ORGAN INJURY
Resumo:
Kaposi sarcoma is the most common human herpesvirus 8 (HHV-8)-related disease described after solid organ transplantation. Multicentric Castleman disease and hemophagocytic syndrome are other potential HHV-8-induced entities but are less frequently reported. We describe the case of a liver transplant recipient who presented with an acute febrile illness 1 year after transplantation with a rapidly fatal outcome. Autopsy revealed 3 distinct HHV-8-related entities: Kaposi sarcoma, HHV-8-associated multicentric Castleman disease with microlymphomas and a severe hemophagocytic syndrome. Retrospective serologic tests suggested that HHV-8 was likely transmitted by the seropositive donor at the time of transplantation. To our knowledge, this is the first case of copresentation of 3 clinical presentations of HHV-8-mediated human disease in the post-transplant setting. Considering the absence of systematic screening of organ donors/recipients for HHV-8 infection, HHV-8-related illness should be suspected in transplant recipients who present with acute febrile illness, systemic symptoms, lymphadenopathies, and/or multiorgan failure to rapidly document the diagnosis and provide timely an adequate treatment.
Resumo:
OBJECTIVE: Experimental evidence suggests that aldosterone directly contributes to organ damage by promoting cell growth, fibrosis, and inflammation. Based on these premises, this work aimed to assess the glomerular effects of aldosterone, alone and in combination with salt. METHODS: After undergoing uninephrectomy, 75 rats were allocated to five groups: control, salt diet, aldosterone, aldosterone + salt diet, aldosterone + salt diet and eplerenone, and they were all studied for four weeks. We focused on glomerular structural, functional, and molecular changes, including slit diaphragm components, local renin-angiotensin system activation, as well as pro-oxidative and profibrotic changes. RESULTS: Aldosterone significantly increased systolic blood pressure, led to glomerular hypertrophy, mesangial expansion, and it significantly increased the glomerular permeability to albumin and the albumin excretion rate, indicating the presence of glomerular damage. These effects were worsened by adding salt to aldosterone, while they were reduced by eplerenone. Aldosterone-induced glomerular damage was associated with glomerular angiotensin-converting enzyme (ACE) 2 downregulation, with ACE/ACE2 ratio increase, ANP decrease, as well as with glomerular pro-oxidative and profibrotic changes. CONCLUSIONS: Aldosterone damages not only the structure but also the function of the glomerulus. ACE/ACE2 upregulation, ACE2 and ANP downregulation, and pro-oxidative and profibrotic changes are possible mechanisms accounting for aldosterone-induced glomerular injury.
Resumo:
In the context of lay mobilization in health-related areas, this article addresses the role and activities of patients' associations in connection with organ donation, on the basis of interviews carried out with thirty members of transplant patients' associations in the French-speaking part of Switzerland. First, we describe the three main categories of activities conducted by these associations. While self-help and public awareness activities are predominant, policy-oriented actions are marginal. Then, we examine the factors likely to explain why these associations have a limited capacity to be active, especially in the public sphere. Such a lack of social visibility is all the more important in the current political context, characterized by the implementation of a national action plan designed to improve organ donation.
Resumo:
Waddlia chondrophila is a known bovine abortigenic Chlamydia-related bacterium that has been associated with adverse pregnancy outcomes in human. However, there is a lack of knowledge regarding how W. chondrophila infection spreads, its ability to elicit an immune response and induce pathology. A murine model of genital infection was developed to investigate the pathogenicity and immune response associated with a W. chondrophila infection. Genital inoculation of the bacterial agent resulted in a dose-dependent infection that spread to lumbar lymph nodes and successively to spleen and liver. Bacterial-induced pathology peaked on day 14, characterized by leukocyte infiltration (uterine horn, liver, and spleen), necrosis (liver) and extramedullary hematopoiesis (spleen). Immunohistochemistry demonstrated the presence of a large number of W. chondrophila in the spleen on day 14. Robust IgG titers were detected by day 14 and remained high until day 52. IgG isotypes consisted of high IgG2a, moderate IgG3 and no detectable IgG1, indicating a Th1-associated immune response. This study provides the first evidence that W. chondrophila genital infection is capable of inducing a systemic infection that spreads to major organs, induces uterus, spleen, and liver pathology and elicits a Th1-skewed humoral response. This new animal model will help our understanding of the mechanisms related to intracellular bacteria-induced miscarriages, the most frequent complication of pregnancy that affects one in four women.
Resumo:
BACKGROUND: Patients following solid organ transplantation have an increased risk of developing de novo bladder tumors, but their biology is poorly characterized. METHODS: We studied 1743 patients who underwent a transurethral resection of a newly diagnosed bladder tumor at a single institution. The histopathology, treatment, recurrence-free survival and overall survival were evaluated and compared between transplant and non-transplant patients. RESULTS: We identified 74 transplant patients who developed a de novo bladder tumor after a median post-transplantation interval of 62 months. The tumor was malignant in 29 patients (39 %). The most common benign lesion was nephrogenic adenoma (84 %), which neither coexisted with nor developed into malignant tumors during follow-up. Compared with non-transplant patients (n = 1669), transplant patients were significantly younger (median 55 vs 69 years, P < 0.001) and had a 9.0-fold higher odds of benign tumors (P < 0.001), while there were no differences in pathology among patients with urothelial carcinoma of the bladder (UCB). In a multivariable analysis for non-muscle-invasive UCB that was adjusted for the risk group, patients with a transplant had a 1.8-fold increased risk of recurrence (P = 0.048). Four of five transplant patients did not respond to Bacillus Calmette-Guérin instillations. There were no differences in overall survival after radical cystectomy (P = 0.87). CONCLUSIONS: The majority of bladder tumors in transplant patients are benign, and they neither coexist with nor develop into malignant tumors. Transplant patients with non-muscle-invasive UCB show an increased risk of disease recurrence, while those treated with radical cystectomy have similar outcomes to patients without a transplant.
Resumo:
Introduction: The Violence Medical Unit (VMU), a specialised forensic medical consultation, was created at the Lausanne university Hospital in 2006. All patients consulting at the ED for interpersonal violencerelated injury are referred to the VMU, which provides forensic documentation of the injury and referral to the relevant community based victim-support organisations within 48 hours of the ED visit. This frees the ED medical staff from forensic injury documentation and legal/social referral, tasks for which they lack both time and training. Among community violence, assaults by nightclub security agents against patrons have increased from 6% to 10% between 2007 and 2009. We set out to characterise the demographics, assault mechanisms, subsequent injuries, prior alcohol intake and ED & VMU costs incurred by this group of patients. Methods: We retrospectively included all patients consulting at the VMU due to assault by nightclub security agents from January 2007 to December 2009. Data was obtained from ED & VMU medical, nursing and administrative records. Results: Our sample included 70 patients, of which 64 were referred by the CHUV ED. The victims were typically young (median age 29) males (93%). 77% of assaults occurred on the weekend between 12 PM and 4 AM, and 73% of the victims were under the influence of alcohol. 83% of the patients were punched, kicked and/or head-butted; 9% had been struck with a blunt instrument. 80% of the injuries were in the head and neck area and 19% of the victims sustained fractures. 21% of the victims were prescribed medical leave. Total ED & VMU costs averaged 1048 SFr. Conclusion: Medical staff treating this population of assault victims must be aware of the assault mechanisms and injury patterns, in particular the high probability of fractures, in order to provide adequate diagnosis and care. Associated inebriation mandates liberal use of radiology, as delayed or missed diagnosis may have medical, medicolegal and legal implications. Emergency medical services play an important role in detecting and reporting of such incidents. Centralised management of the forensic documentation facilitates referral to victim support organisations and epidemiological data collection. Magnitudes and trends of the different types of violence can be determined, and this information can be then impact public safety management policies.
Resumo:
NlmCategory="UNASSIGNED">Metabolic syndrome after transplantation is a major concern following solid organ transplantation (SOT). The CREB-regulated transcription co-activator 2 (CRTC2) regulates glucose metabolism. The effect of CRTC2 polymorphisms on new-onset diabetes after transplantation (NODAT) was investigated in a discovery sample of SOT recipients (n1=197). Positive results were tested for replication in two samples from the Swiss Transplant Cohort Study (STCS, n2=1294 and n3=759). Obesity and other metabolic traits were also tested. Associations with metabolic traits in population-based samples (n4=46'186, n5=123'865, n6>100,000) were finally analyzed. In the discovery sample, CRTC2 rs8450-AA genotype was associated with NODAT, fasting blood glucose and body mass index (Pcorrected<0.05). CRTC2 rs8450-AA genotype was associated with NODAT in the second STCS replication sample (odd ratio (OR)=2.01, P=0.04). In the combined STCS replication samples, the effect of rs8450-AA genotype on NODAT was observed in patients having received SOT from a deceased donor and treated with tacrolimus (n=395, OR=2.08, P=0.02) and in non-kidney transplant recipients (OR=2.09, P=0.02). Moreover, rs8450-AA genotype was associated with overweight or obesity (n=1215, OR=1.56, P=0.02), new-onset hyperlipidemia (n=1007, OR=1.76, P=0.007), and lower high-density lipoprotein-cholesterol (n=1214, β=-0.08, P=0.001). In the population-based samples, a proxy of rs8450G>A was significantly associated with several metabolic abnormalities. CRTC2 rs8450G>A appears to have an important role in the high prevalence of metabolic traits observed in patients with SOT. A weak association with metabolic traits was also observed in the population-based samples.The Pharmacogenomics Journal advance online publication, 8 December 2015; doi:10.1038/tpj.2015.82.
Resumo:
The brain integrates multiple sensory inputs, including somatosensory and visual inputs, to produce a representation of the body. Spinal cord injury (SCI) interrupts the communication between brain and body and the effects of this deafferentation on body representation are poorly understood. We investigated whether the relative weight of somatosensory and visual frames of reference for body representation is altered in individuals with incomplete or complete SCI (affecting lower limbs' somatosensation), with respect to controls. To study the influence of afferent somatosensory information on body representation, participants verbally judged the laterality of rotated images of feet, hands, and whole-bodies (mental rotation task) in two different postures (participants' body parts were hidden from view). We found that (i) complete SCI disrupts the influence of postural changes on the representation of the deafferented body parts (feet, but not hands) and (ii) regardless of posture, whole-body representation progressively deteriorates proportionally to SCI completeness. These results demonstrate that the cortical representation of the body is dynamic, responsive, and adaptable to contingent conditions, in that the role of somatosensation is altered and partially compensated with a change in the relative weight of somatosensory versus visual bodily representations.
Resumo:
Cerebral energy dysfunction has emerged as an important determinant of prognosis following traumatic brain injury (TBI). A number of studies using cerebral microdialysis, positron emission tomography, and jugular bulb oximetry to explore cerebral metabolism in patients with TBI have demonstrated a critical decrease in the availability of the main energy substrate of brain cells (i.e., glucose). Energy dysfunction induces adaptations of cerebral metabolism that include the utilization of alternative energy resources that the brain constitutively has, such as lactate. Two decades of experimental and human investigations have convincingly shown that lactate stands as a major actor of cerebral metabolism. Glutamate-induced activation of glycolysis stimulates lactate production from glucose in astrocytes, with subsequent lactate transfer to neurons (astrocyte-neuron lactate shuttle). Lactate is not only used as an extra energy substrate but also acts as a signaling molecule and regulator of systemic and brain glucose use in the cerebral circulation. In animal models of brain injury (e.g., TBI, stroke), supplementation with exogenous lactate exerts significant neuroprotection. Here, we summarize the main clinical studies showing the pivotal role of lactate and cerebral lactate metabolism after TBI. We also review pilot interventional studies that examined exogenous lactate supplementation in patients with TBI and found hypertonic lactate infusions had several beneficial properties on the injured brain, including decrease of brain edema, improvement of neuroenergetics via a "cerebral glucose-sparing effect," and increase of cerebral blood flow. Hypertonic lactate represents a promising area of therapeutic investigation; however, larger studies are needed to further examine mechanisms of action and impact on outcome.
Resumo:
The immune system is involved in the development of neuropathic pain. In particular, the infiltration of T-lymphocytes into the spinal cord following peripheral nerve injury has been described as a contributor to sensory hypersensitivity. We used the spared nerve injury (SNI) model of neuropathic pain in Sprague Dawley adult male rats to assess proliferation, and/or protein/gene expression levels for microglia (Iba1), T-lymphocytes (CD2) and cytotoxic T-lymphocytes (CD8). In the dorsal horn ipsilateral to SNI, Iba1 and BrdU stainings revealed microglial reactivity and proliferation, respectively, with different durations. Iba1 expression peaked at D4 and D7 at the mRNA and protein level, respectively, and was long-lasting. Proliferation occurred almost exclusively in Iba1 positive cells and peaked at D2. Gene expression observation by RT-qPCR array suggested that T-lymphocytes attracting chemokines were upregulated after SNI in rat spinal cord but only a few CD2/CD8 positive cells were found. A pronounced infiltration of CD2/CD8 positive T-cells was seen in the spinal cord injury (SCI) model used as a positive control for lymphocyte infiltration. Under these experimental conditions, we show early and long-lasting microglia reactivity in the spinal cord after SNI, but no lymphocyte infiltration was found.
Resumo:
Chlamydial infections in koalas can cause life-threatening diseases leading to blindness and sterility. However, little is known about the systemic spread of chlamydiae in the inner organs of the koala, and data concerning related pathological organ lesions are limited. The aim of this study was to perform a thorough investigation of organs from 23 koalas and to correlate their histopathological lesions to molecular chlamydial detection. To reach this goal, 246 formalin-fixed and paraffin embedded organ samples from 23 koalas were investigated by histopathology, Chlamydiaceae real-time PCR and immunohistochemistry, ArrayTube Microarray for Chlamydiaceae species identification as well as Chlamydiales real-time PCR and sequencing. By PCR, two koalas were positive for Chlamydia pecorum whereas immunohistochemical labelling for Chlamydiaceae was detected in 10 tissues out of nine koalas. The majority of these (n=6) had positive labelling in the urogenital tract related to histopathological lesions such as cystitis, endometritis, pyelonephritis and prostatitis. Somehow unexpected was the positive labelling in the gastrointestinal tract including the cloaca as well as in lung and spleen indicating systemic spread of infection. Uncultured Chlamydiales were detected in several organs of seven koalas by PCR, and four of these suffered from plasmacytic enteritis of unknown aetiology. Whether the finding of Chlamydia-like organisms in the gastrointestinal tract is linked to plasmacytic enteritis is unclear and remains speculative. However, as recently shown in a mouse model, the gastrointestinal tract might play a role being the site for persistent chlamydial infections and being a source for reinfection of the genital tract.
Resumo:
Perinatal asphyxia induces neuronal cell death and brain injury, and is often associated with irreversible neurological deficits in children. There is an urgent need to elucidate the neuronal death mechanisms occurring after neonatal hypoxia-ischemia (HI). We here investigated the selective neuronal deletion of the Atg7 (autophagy related 7) gene on neuronal cell death and brain injury in a mouse model of severe neonatal hypoxia-ischemia. Neuronal deletion of Atg7 prevented HI-induced autophagy, resulted in 42% decrease of tissue loss compared to wild-type mice after the insult, and reduced cell death in multiple brain regions, including apoptosis, as shown by decreased caspase-dependent and -independent cell death. Moreover, we investigated the lentiform nucleus of human newborns who died after severe perinatal asphyxia and found increased neuronal autophagy after severe hypoxic-ischemic encephalopathy compared to control uninjured brains, as indicated by the numbers of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3)-, LAMP1 (lysosomal-associated membrane protein 1)-, and CTSD (cathepsin D)-positive cells. These findings reveal that selective neuronal deletion of Atg7 is strongly protective against neuronal death and overall brain injury occurring after HI and suggest that inhibition of HI-enhanced autophagy should be considered as a potential therapeutic target for the treatment of human newborns developing severe hypoxic-ischemic encephalopathy.