323 resultados para HLA genes
Resumo:
The mature TCR is composed of a clonotypic heterodimer (alpha beta or gamma delta) associated with the invariant CD3 components (gamma, delta, epsilon and zeta). There is now considerable evidence that more immature forms of the TCR-CD3 complex (consisting of either CD3 alone or CD3 associated with a heterodimer of TCR beta and pre-T alpha) can be expressed at the cell surface on early thymocytes. These pre-TCR complexes are believed to be necessary for the ordered progression of early T cell development. We have analyzed in detail the expression of both the pre-TCR and CD3 complex at various stages of adult thymus development. Our data indicate that all CD3 components are already expressed at the mRNA level by the earliest identifiable (CD4lo) thymic precursor. In contrast, genes encoding the pre-TCR complex (pre-T alpha and fully rearranged TCR beta) are first expressed at the CD44loCD25+CD4-CD8- stage. Detectable surface expression of both CD3 and TCR beta are delayed relative to expression of the corresponding genes, suggesting the existence of other (as yet unidentified) components of the pre-TCR complex.
Resumo:
Narcolepsy is a rare sleep disorder with the strongest human leukocyte antigen (HLA) association ever reported. Since the associated HLA-DRB1*1501-DQB1*0602 haplotype is common in the general population (15-25%), it has been suggested that it is almost necessary but not sufficient for developing narcolepsy. To further define the genetic basis of narcolepsy risk, we performed a genome-wide association study (GWAS) in 562 European individuals with narcolepsy (cases) and 702 ethnically matched controls, with independent replication in 370 cases and 495 controls, all heterozygous for DRB1*1501-DQB1*0602. We found association with a protective variant near HLA-DQA2 (rs2858884; P < 3 x 10(-8)). Further analysis revealed that rs2858884 is strongly linked to DRB1*03-DQB1*02 (P < 4 x 10(-43)) and DRB1*1301-DQB1*0603 (P < 3 x 10(-7)). Cases almost never carried a trans DRB1*1301-DQB1*0603 haplotype (odds ratio = 0.02; P < 6 x 10(-14)). This unexpected protective HLA haplotype suggests a virtually causal involvement of the HLA region in narcolepsy susceptibility.
Resumo:
MHC class II (MHCII) genes are transactivated by the NOD-like receptor (NLR) family member CIITA, which is recruited to SXY enhancers of MHCII promoters via a DNA-binding "enhanceosome" complex. NLRC5, another NLR protein, was recently found to control transcription of MHC class I (MHCI) genes. However, detailed understanding of NLRC5's target gene specificity and mechanism of action remained lacking. We performed ChIP-sequencing experiments to gain comprehensive information on NLRC5-regulated genes. In addition to classical MHCI genes, we exclusively identified novel targets encoding non-classical MHCI molecules having important functions in immunity and tolerance. ChIP-sequencing performed with Rfx5(-/-) cells, which lack the pivotal enhanceosome factor RFX5, demonstrated its strict requirement for NLRC5 recruitment. Accordingly, Rfx5-knockout mice phenocopy Nlrc5 deficiency with respect to defective MHCI expression. Analysis of B cell lines lacking RFX5, RFXAP, or RFXANK further corroborated the importance of the enhanceosome for MHCI expression. Although recruited by common DNA-binding factors, CIITA and NLRC5 exhibit non-redundant functions, shown here using double-deficient Nlrc5(-/-)CIIta(-/-) mice. These paradoxical findings were resolved by using a "de novo" motif-discovery approach showing that the SXY consensus sequence occupied by NLRC5 in vivo diverges significantly from that occupied by CIITA. These sequence differences were sufficient to determine preferential occupation and transactivation by NLRC5 or CIITA, respectively, and the S box was found to be the essential feature conferring NLRC5 specificity. These results broaden our knowledge on the transcriptional activities of NLRC5 and CIITA, revealing their dependence on shared enhanceosome factors but their recruitment to distinct enhancer motifs in vivo. Furthermore, we demonstrated selectivity of NLRC5 for genes encoding MHCI or related proteins, rendering it an attractive target for therapeutic intervention. NLRC5 and CIITA thus emerge as paradigms for a novel class of transcriptional regulators dedicated for transactivating extremely few, phylogenetically related genes.
Resumo:
The cross-recognition of peptides by cytotoxic T lymphocytes is a key element in immunology and in particular in peptide based immunotherapy. Here we develop three-dimensional (3D) quantitative structure-activity relationships (QSARs) to predict cross-recognition by Melan-A-specific cytotoxic T lymphocytes of peptides bound to HLA A*0201 (hereafter referred to as HLA A2). First, we predict the structure of a set of self- and pathogen-derived peptides bound to HLA A2 using a previously developed ab initio structure prediction approach [Fagerberg et al., J. Mol. Biol., 521-46 (2006)]. Second, shape and electrostatic energy calculations are performed on a 3D grid to produce similarity matrices which are combined with a genetic neural network method [So et al., J. Med. Chem., 4347-59 (1997)] to generate 3D-QSAR models. The models are extensively validated using several different approaches. During the model generation, the leave-one-out cross-validated correlation coefficient (q (2)) is used as the fitness criterion and all obtained models are evaluated based on their q (2) values. Moreover, the best model obtained for a partitioned data set is evaluated by its correlation coefficient (r = 0.92 for the external test set). The physical relevance of all models is tested using a functional dependence analysis and the robustness of the models obtained for the entire data set is confirmed using y-randomization. Finally, the validated models are tested for their utility in the setting of rational peptide design: their ability to discriminate between peptides that only contain side chain substitutions in a single secondary anchor position is evaluated. In addition, the predicted cross-recognition of the mono-substituted peptides is confirmed experimentally in chromium-release assays. These results underline the utility of 3D-QSARs in peptide mimetic design and suggest that the properties of the unbound epitope are sufficient to capture most of the information to determine the cross-recognition.
Resumo:
Introduction: Infl uenza vaccination is recommended for all solid organ transplant recipients. However, some centers are reluctant to give annual vaccination due to concerns about precipitating rejection. A proposed mechanism of this is vaccineinduced development of cellular and humoral responses to donor HLA antigens. We studied the induction of HLA Ab in a cohort of lung transplant recipients receiving infl uenza vaccination. Methods: Adult lung transplant recipients were immunized with 0.5 mL intramuscular seasonal infl uenza vaccine followed by 0.1 mL intradermal booster at 4 weeks as part of a previous study. Sera were collected pre-vaccination and at 4, 8 weeks post-vaccination. Post-vaccination sera were analyzed for HLA Ab using fl owPRA specifi c beads (One Lambda Inc). A positive result was defi ned as 5%. Positive samples were further analyzed for antibody specifi city by single antigen bead testing. Pre-vaccination sera were tested only only if post-vaccination sample screen was positive for HLA Ab. The presence of HLA Ab was correlated to vaccine seroresponse and rejection episodes. Results: Sixty patients were included with equal numbers of men and women. Mean age of patients was 47.3 years (range 20.7-72.4). Median time post-transplant was 1.3 years (range 85 days - 17 years). One patient was excluded due to an uninterpretable baseline screen result. 16/59 (27.1%) patients were positive for HLA Ab both in both pre- and post-vaccination samples. Of these, 12/16 (75%) had antibody against HLA Class I (majority A30,A31,B27,B44), 2/16 (12.5%) had antibody against HLA class II (majority DQ4, DQ7), and 2/16 (12.5%) had antibody against both Class I & II. There was no signifi cant increase in existing HLA Ab post-vaccination. Of the 16 patients, only one (6.3%) patient had de novo HLA Ab and this was determined to be non donor specifi c. Factors such as gender, time from transplant, immunosuppression, and acute rejection episodes did not correlate with presence of HLA Ab. HLA Ab was not associated with seroconversion to to vaccine antigens. Conclusions: Our data support that receiving the annual infl uenza vaccine does not lead to the generation of de novo donor specifi c antibodies in lung transplant recipients or upregulation of existing HLA Ab.
Resumo:
Caspase 1 is part of the inflammasome, which is assembled upon pathogen recognition, while caspases 3 and/or 7 are mediators of apoptotic and nonapoptotic functions. PARP1 cleavage is a hallmark of apoptosis yet not essential, suggesting it has another physiological role. Here we show that after LPS stimulation, caspase 7 is activated by caspase 1, translocates to the nucleus, and cleaves PARP1 at the promoters of a subset of NF-κB target genes negatively regulated by PARP1. Mutating the PARP1 cleavage site D214 renders PARP1 uncleavable and inhibits PARP1 release from chromatin and chromatin decondensation, thereby restraining the expression of cleavage-dependent NF-κB target genes. These findings propose an apoptosis-independent regulatory role for caspase 7-mediated PARP1 cleavage in proinflammatory gene expression and provide insight into inflammasome signaling.
Resumo:
BACKGROUND: To determine the extent to which major histoincompatibilities are recognized after bone marrow transplantation, we characterized the specificity of the cytotoxic T lymphocytes isolated during graft-versus-host disease. We studied three patients transplanted with marrow from donors who were histoincompatible for different types of HLA antigens. METHODS: Patient 1 was mismatched for one "ABDR-antigen" (HLA-A2 versus A3). Two patients were mismatched for antigens that would usually not be taken into account by standard selection procedures: patient 2 was mismatched for an "HLA-A subtype" (A*0213 versus A*0201), whereas patient 3 was mismatched for HLA-C (HLA-C*0501 versus HLA-C*0701). All three HLA class I mismatches were detected by a pretransplant cytotoxic precursor test. RESULTS: Analysis of the specificity of the cytotoxic T lymphocyte clones isolated after transplantation showed that the incompatibilities detected by the pretransplant cytotoxic precursor assay were the targets recognized during graft-versus-host disease. CONCLUSIONS: Independent of whether the incompatibility consisted of a "full" mismatch, a "subtype" mismatch, or an HLA-C mismatch, all clones recognized the incompatible HLA molecule. In addition, some of these clones had undergone antigen selection and were clearly of higher specificity than the ones established before transplantation, indicating that they had been participating directly in the antihost immune response.
Resumo:
One of the most obvious characteristics of the egg cells of oviparous animals is their large size resulting to a major extent from the deposition of nutritional reserves, mainly constituted of yolk proteins. In general, these are derived from a precursor called vitellogenin, which undergoes posttranslational modifications during secretion and during transport into and storage within the oocytes. Comparative analysis of the structural organization of the vitellogenin gene and of its product in different species shows that the vitellogenin gene is very ancient and that in vertebrates the gene may have more resemblance to the earliest gene than in invertebrates.
Resumo:
Context: Both biallelic and monoallelic mutations in PROK2 or PROKR2 have been found in Kallmann syndrome (KS). Objective: The objective of the study was to compare the phenotypes of KS patients harboring monoallelic and biallelic mutations in these genes. Design and Patients: We studied clinical and endocrine features that reflect the functioning of the pituitary-gonadal axis, and the nonreproductive phenotype, in 55 adult KS patients (42 men and 13 women), of whom 41 had monoallelic mutations and 14 biallelic mutations in PROK2 or PROKR2. Results: Biallelic mutations were associated with more frequent cryptorchidism (70% vs. 34%, P < 0.05) and microphallus (90% vs. 28%, P < 0.001) and lower mean testicular volume (1.2 +/- 0.4 vs. 4.5 +/- 6.0 ml; P < 0.01) in male patients. Likewise, the testosterone level as well as the basal FSH level and peak LH level under GnRH-stimulation were lower in males with biallelic mutations (0.2 +/- 0.1 vs. 0.7 +/- 0.8 ng/ml; P = 0.05, 0.3 +/- 0.1 vs. 1.8 +/- 3.0 IU/liter; P < 0.05, and 0.8 +/- 0.8 vs. 5.2 +/- 5.5 IU/liter; P < 0.05, respectively). Nonreproductive, nonolfactory anomalies were rare in both sexes and were never found in patients with biallelic mutations. The mean body mass index of the patients (23.9 +/- 4.2 kg/m(2) in males and 26.3 +/- 6.6 kg/m(2) in females) did not differ significantly from that of gender-, age-, and treatment-matched KS individuals who did not carry a mutation in PROK2 or PROKR2. Finally, circadian cortisol levels evaluated in five patients, including one with biallelic PROKR2 mutations, were normal in all cases. Conclusion: Male patients carrying biallelic mutations in PROK2 or PROKR2 have a less variable and on average a more severe reproductive phenotype than patients carrying monoallelic mutations in these genes. Nonreproductive, nonolfactory clinical anomalies associated with KS seem to be restricted to patients with monoallelic mutations.
Resumo:
Mouse NK cells express MHC class I-specific inhibitory Ly49 receptors. Since these receptors display distinct ligand specificities and are clonally distributed, their expression generates a diverse NK cell receptor repertoire specific for MHC class I molecules. We have previously found that the Dd (or Dk)-specific Ly49A receptor is usually expressed from a single allele. However, a small fraction of short-term NK cell clones expressed both Ly49A alleles, suggesting that the two Ly49A alleles are independently and randomly expressed. Here we show that the genes for two additional Ly49 receptors (Ly49C and Ly49G2) are also expressed in a (predominantly) mono-allelic fashion. Since single NK cells can co-express multiple Ly49 receptors, we also investigated whether mono-allelic expression from within the tightly linked Ly49 gene cluster is coordinate or independent. Our clonal analysis suggests that the expression of alleles of distinct Ly49 genes is not coordinate. Thus Ly49 alleles are apparently independently and randomly chosen for stable expression, a process that directly restricts the number of Ly49 receptors expressed per single NK cell. We propose that the Ly49 receptor repertoire specific for MHC class I is generated by an allele-specific, stochastic gene expression process that acts on the entire Ly49 gene cluster.
Resumo:
OBJECTIVES: HLA-B*5701 is a major histocompatibility complex class I allele associated with an immunologically-mediated hypersensitivity reaction to abacavir. The objectives of this study were to evaluate HLA-B*5701 prevalence among European, HIV-1-infected patients and to compare the local and central laboratory screening results. METHODS: Data were combined from six multicentre, prospective studies involving 10 European countries in which HIV-1-infected patients (irrespective of treatment experience or previous HLA-B*5701 screening), >or=18 years of age, were evaluated for HLA-B*5701 carriage, determined by the central and local laboratory methods. RESULTS: A total of 9720 patients from 272 centres were included in the analysis. The overall estimate of HLA-B*5701 prevalence in Europe was 4.98%, with country-specific estimates ranging from 1.53 to 7.75%. HLA-B*5701 prevalence was highest in the self-reported white population (6.49%) and lowest in the black population (0.39%). Local laboratory results had a high specificity (99.9%) and sensitivity (99.2%) when compared with the central laboratory results. CONCLUSION: This study supports data from previous studies regarding the prevalence of HLA-B*5701 in the HIV population and the variation of HLA-B*5701 prevalence between different racial groups. The high specificity and sensitivity of local laboratory results, suggests that clinicians can be confident in using local laboratories for pretreatment HLA-B*5701 screening. However, it is essential that local laboratories participate in HLA-B*5701-specific quality assurance programs to maintain 100% sensitivity. In HIV-infected patients, pretreatment HLA-B*5701 screening may allow more informed decisions regarding abacavir use and has the potential to significantly reduce the frequency of abacavir-related hypersensitivity reactions and costs associated with managing these reactions.
Resumo:
Ex vivo ELISPOT and multimer staining are well-established tests for the assessment of antigen-specific T cells. Many laboratories are now using a period of in vitro stimulation (IVS) to enhance detection. Here, we report the findings of a multi-centre panel organised by the Association for Cancer Immunotherapy Immunoguiding Program to investigate the impact of IVS protocols on the detection of antigen-specific T cells of varying ex vivo frequency. Five centres performed ELISPOT and multimer staining on centrally prepared PBMCs from 3 donors, both ex vivo and following IVS. A harmonised IVS protocol was designed based on the best-performing protocol(s), which was then evaluated in a second phase on 2 donors by 6 centres. All centres were able to reliably detect antigen-specific T cells of high/intermediate frequency both ex vivo (Phase I) and post-IVS (Phase I and II). The highest frequencies of antigen-specific T cells ex vivo were mirrored in the frequencies following IVS and in the detection rates. However, antigen-specific T cells of a low/undetectable frequency ex vivo were not reproducibly detected post-IVS. Harmonisation of the IVS protocol reduced the inter-laboratory variation observed for ELISPOT and multimer analyses by approximately 20 %. We further demonstrate that results from ELISPOT and multimer staining correlated after (P < 0.0001 and R (2) = 0.5113), but not before IVS. In summary, IVS was shown to be a reproducible method that benefitted from method harmonisation.
Resumo:
PURPOSE: A homozygous mutation in the H6 family homeobox 1 (HMX1) gene is responsible for a new oculoauricular defect leading to eye and auricular developmental abnormalities as well as early retinal degeneration (MIM 612109). However, the HMX1 pathway remains poorly understood, and in the first approach to better understand the pathway's function, we sought to identify the target genes. METHODS: We developed a predictive promoter model (PPM) approach using a comparative transcriptomic analysis in the retina at P15 of a mouse model lacking functional Hmx1 (dmbo mouse) and its respective wild-type. This PPM was based on the hypothesis that HMX1 binding site (HMX1-BS) clusters should be more represented in promoters of HMX1 target genes. The most differentially expressed genes in the microarray experiment that contained HMX1-BS clusters were used to generate the PPM, which was then statistically validated. Finally, we developed two genome-wide target prediction methods: one that focused on conserving PPM features in human and mouse and one that was based on the co-occurrence of HMX1-BS pairs fitting the PPM, in human or in mouse, independently. RESULTS: The PPM construction revealed that sarcoglycan, gamma (35kDa dystrophin-associated glycoprotein) (Sgcg), teashirt zinc finger homeobox 2 (Tshz2), and solute carrier family 6 (neurotransmitter transporter, glycine) (Slc6a9) genes represented Hmx1 targets in the mouse retina at P15. Moreover, the genome-wide target prediction revealed that mouse genes belonging to the retinal axon guidance pathway were targeted by Hmx1. Expression of these three genes was experimentally validated using a quantitative reverse transcription PCR approach. The inhibitory activity of Hmx1 on Sgcg, as well as protein tyrosine phosphatase, receptor type, O (Ptpro) and Sema3f, two targets identified by the PPM, were validated with luciferase assay. CONCLUSIONS: Gene expression analysis between wild-type and dmbo mice allowed us to develop a PPM that identified the first target genes of Hmx1.
Resumo:
Genomic clones containing the Xenopus laevis vitellogenin gene B1 have been isolated from DNA libraries and characterized by heteroduplex mapping in the electron microscope, restriction endonuclease analysis, and in vitro transcription in a HeLa whole-cell extract. Sequences from the 3'-flanking region of the previously isolated A1 vitellogenin gene were found in the 5'-flanking region of this B1 gene. Thus, the two genes are linked, with 15.5 kilobase pairs of DNA between them. Their length is about 22 kilobase pairs (A1 gene) and 16.5 kilobase pairs (B1 gene) and they have the following arrangement: 5'-A1 gene-spacer-B1 gene-3'. The analysis of heteroduplexes formed between the two genes revealed several regions of homology. Both genes are in the same orientation and, therefore, are transcribed from the same DNA strand. The possible events by which the vitellogenin gene family arose in Xenopus laevis are discussed.
Resumo:
MAGE genes encode tumor-specific shared antigens that are among the most interesting candidates for cancer vaccines. Despite extensive studies, however, CD8+ T-cell responses to MAGE-derived epitopes have been detected only occasionally in cancer patients, even after vaccination. In contrast with these findings, we report here that HLA-A2 melanoma patients respond frequently to the recently identified peptide MAGE-A10(254-262). Indeed, as assessed by staining with fluorescent HLA-A2/peptide MAGE-A10(254-262) tetramers, CD8+ T cells directed against this peptide were readily detectable in a large proportion of HLA-A2+ melanoma patients. These results provide new insight into the immunogenicity of MAGE antigens and underline the potential usefulness of MAGE-A10 peptide-based cancer vaccines.