357 resultados para Coronary Syndromes
Resumo:
The authors compared radial steady-state free precession (SSFP) coronary magnetic resonance (MR) angiography, cartesian k-space sampling SSFP coronary MR angiography, and gradient-echo coronary MR angiography in 16 healthy adults and four pilot study patients. Standard gradient-echo MR imaging with a T2 preparatory pulse and cartesian k-space sampling was the reference technique. Image quality was compared by using subjective motion artifact level and objective contrast-to-noise ratio and vessel sharpness. Radial SSFP, compared with cartesian SSFP and gradient-echo MR angiography, resulted in reduced motion artifacts and superior vessel sharpness. Cartesian SSFP resulted in increased motion artifacts (P <.05). Contrast-to-noise ratio with radial SSFP was lower than that with cartesian SSFP and similar to that with the reference technique. Radial SSFP coronary MR angiography appears preferable because of improved definition of vessel borders.
Resumo:
During conventional x-ray coronary angiography, multiple projections of the coronary arteries are acquired to define coronary anatomy precisely. Due to time constraints, coronary magnetic resonance angiography (MRA) usually provides only one or two views of the major coronary vessels. A coronary MRA approach that allowed for reconstruction of arbitrary isotropic orientations might therefore be desirable. The purpose of the study was to develop a three-dimensional (3D) coronary MRA technique with isotropic image resolution in a relatively short scanning time that allows for reconstruction of arbitrary views of the coronary arteries without constraints given by anisotropic voxel size. Eight healthy adult subjects were examined using a real-time navigator-gated and corrected free-breathing interleaved echoplanar (TFE-EPI) 3D-MRA sequence. Two 3D datasets were acquired for the left and right coronary systems in each subject, one with anisotropic (1.0 x 1.5 x 3.0 mm, 10 slices) and one with "near" isotropic (1.0 x 1.5 x 1.0 mm, 30 slices) image resolution. All other imaging parameters were maintained. In all cases, the entire left main (LM) and extensive portions of the left anterior descending (LAD) and the right coronary artery (RCA) were visualized. Objective assessment of coronary vessel sharpness was similar (41% +/- 5% vs. 42% +/- 5%; P = NS) between in-plane and through-plane views with "isotropic" voxel size but differed (32% +/- 7% vs. 23% +/- 4%; P < 0.001) with nonisotropic voxel size. In reconstructed views oriented in the through-plane direction, the vessel border was 86% more defined (P < 0.01) for isotropic compared with anisotropic images. A smaller (30%; P < 0.001) improvement was seen for in-plane reconstructions. Vessel diameter measurements were view independent (2.81 +/- 0.45 mm vs. 2.66 +/- 0.52 mm; P = NS) for isotropic, but differed (2.71 +/- 0.51 mm vs. 3.30 +/- 0.38 mm; P < 0.001) between anisotropic views. Average scanning time was 2:31 +/- 0:57 minutes for anisotropic and 7:11 +/- 3:02 minutes for isotropic image resolution (P < 0.001). We present a new approach for "near" isotropic 3D coronary artery imaging, which allows for reconstruction of arbitrary views of the coronary arteries. The good delineation of the coronary arteries in all views suggests that isotropic 3D coronary MRA might be a preferred technique for the assessment of coronary disease, although at the expense of prolonged scan times. Comparative studies with conventional x-ray angiography are needed to investigate the clinical utility of the isotropic strategy.
Resumo:
Objective: To assess the impact of patient admission in different hospital types in Switzerland on early in-hospital and 1-year outcomes in patients with acute coronary syndrome (ACS).Methods: From 1997 to 2009, 31,010 ACS patients from 76 Swiss hospitals were enrolled in the AMIS Plus registry. Large tertiary teaching institutions with 24 hour/7 day cardiac catheterization facilities were classified as type A hospitals, all others as type B. One-year outcome was studied in a subgroup of patients admitted after 2005. Multivariate logistic regression models were used to calculate the odds ratios (OR with 95%CI) for independent predictors of mortality and major adverse cardiac events (MACE).Results: There were 11 type A hospitals with admissions of 15,987 (52%) patients and 65 type B hospitals with 15,023 (48%) patients. Patients initially admitted into B hospitals were older, more frequently female, hypertensive and diabetic, had more severe comorbidities and more frequently NSTE-ACS/UA. They were less likely to receive aspirin, clopidogrel and GPIIb/IIIa antagonists. STE-ACS patients initially admitted into B hospitals received more thrombolysis than those admitted into A hospitals, but less percutaneous coronary intervention (PCI). From the patients admitted to B hospitals, 5271 (35%) were transferred for intervention. Crude in-hospital mortality and MACE were higher in patients from B hospitals. Crude 1-year mortality of 3747 ACS patients followed up was higher in patients initially admitted into B hospitals, but no differences were found for MACE. Hospital type, after adjustment for age, risk factors, type of ACS and co-morbidities, was not an independent predictor of in-hospital mortality (OR 0.94; 0.76-1.16), in-hospital MACE (0.98; 0.82-1.17), 1-year mortality or 1-year MACE (1.06; 0.85-1.33). Analysis of the time of admission indicated a crude outcome in favor of hospitalization during duty-hours but no significant effect could be documented for 1-year outcome.Conclusion: ACS patients admitted to type B hospitals were older, had more severe co-morbidities, more NSTEACS and received less intensive treatment. However, after correcting for baseline inequalities, early and mid-term outcomes were similar regardless of hospital type. Ultimate patient outcome thus does not appear to be influenced by the type of hospital where the initial admission takes place. Appropriate early referral of selected patients probably partly explains this finding.
Resumo:
An increasing number of patients suffering from cardiovascular disease, especially coronary artery disease (CAD), are treated with aspirin and/or clopidogrel for the prevention of major adverse events. Unfortunately, there are no specific, widely accepted recommendations for the perioperative management of patients receiving antiplatelet therapy. Therefore, members of the Perioperative Haemostasis Group of the Society on Thrombosis and Haemostasis Research (GTH), the Perioperative Coagulation Group of the Austrian Society for Anesthesiology, Reanimation and Intensive Care (ÖGARI) and the Working Group Thrombosis of the European Society of Cardiology (ESC) have created this consensus position paper to provide clear recommendations on the perioperative use of anti-platelet agents (specifically with semi-urgent and urgent surgery), strongly supporting a multidisciplinary approach to optimize the treatment of individual patients with coronary artery disease who need major cardiac and non-cardiac surgery. With planned surgery, drug eluting stents (DES) should not be used unless surgery can be delayed for ≥12 months after DES implantation. If surgery cannot be delayed, surgical revascularisation, bare-metal stents or pure balloon angioplasty should be considered. During ongoing antiplatelet therapy, elective surgery should be delayed for the recommended duration of treatment. In patients with semi-urgent surgery, the decision to prematurely stop one or both antiplatelet agents (at least 5 days pre-operatively) has to be taken after multidisciplinary consultation, evaluating the individual thrombotic and bleeding risk. Urgently needed surgery has to take place under full antiplatelet therapy despite the increased bleeding risk. A multidisciplinary approach for optimal antithrombotic and haemostatic patient management is thus mandatory.
Resumo:
CONTEXT: In populations of older adults, prediction of coronary heart disease (CHD) events through traditional risk factors is less accurate than in middle-aged adults. Electrocardiographic (ECG) abnormalities are common in older adults and might be of value for CHD prediction. OBJECTIVE: To determine whether baseline ECG abnormalities or development of new and persistent ECG abnormalities are associated with increased CHD events. DESIGN, SETTING, AND PARTICIPANTS: A population-based study of 2192 white and black older adults aged 70 to 79 years from the Health, Aging, and Body Composition Study (Health ABC Study) without known cardiovascular disease. Adjudicated CHD events were collected over 8 years between 1997-1998 and 2006-2007. Baseline and 4-year ECG abnormalities were classified according to the Minnesota Code as major and minor. Using Cox proportional hazards regression models, the addition of ECG abnormalities to traditional risk factors were examined to predict CHD events. MAIN OUTCOME MEASURE: Adjudicated CHD events (acute myocardial infarction [MI], CHD death, and hospitalization for angina or coronary revascularization). RESULTS: At baseline, 276 participants (13%) had minor and 506 (23%) had major ECG abnormalities. During follow-up, 351 participants had CHD events (96 CHD deaths, 101 acute MIs, and 154 hospitalizations for angina or coronary revascularizations). Both baseline minor and major ECG abnormalities were associated with an increased risk of CHD after adjustment for traditional risk factors (17.2 per 1000 person-years among those with no abnormalities; 29.3 per 1000 person-years; hazard ratio [HR], 1.35; 95% CI, 1.02-1.81; for minor abnormalities; and 31.6 per 1000 person-years; HR, 1.51; 95% CI, 1.20-1.90; for major abnormalities). When ECG abnormalities were added to a model containing traditional risk factors alone, 13.6% of intermediate-risk participants with both major and minor ECG abnormalities were correctly reclassified (overall net reclassification improvement [NRI], 7.4%; 95% CI, 3.1%-19.0%; integrated discrimination improvement, 0.99%; 95% CI, 0.32%-2.15%). After 4 years, 208 participants had new and 416 had persistent abnormalities. Both new and persistent ECG abnormalities were associated with an increased risk of subsequent CHD events (HR, 2.01; 95% CI, 1.33-3.02; and HR, 1.66; 95% CI, 1.18-2.34; respectively). When added to the Framingham Risk Score, the NRI was not significant (5.7%; 95% CI, -0.4% to 11.8%). CONCLUSIONS: Major and minor ECG abnormalities among older adults were associated with an increased risk of CHD events. Depending on the model, adding ECG abnormalities was associated with improved risk prediction beyond traditional risk factors.
Resumo:
PURPOSE: In the present study, the impact of the two different fat suppression techniques was investigated for free breathing 3D spiral coronary magnetic resonance angiography (MRA). As the coronary arteries are embedded in epicardial fat and are adjacent to myocardial tissue, magnetization preparation such as T(2)-preparation and fat suppression is essential for coronary discrimination. MATERIALS AND METHODS: Fat-signal suppression in three-dimensional (3D) thin- slab coronary MRA based on a spiral k-space data acquisition can either be achieved by signal pre-saturation using a spectrally selective inversion recovery pre-pulse or by spectral-spatial excitation. In the present study, the performance of the two different approaches was studied in healthy subjects. RESULTS: No significant objective or subjective difference was found between the two fat suppression approaches. CONCLUSION: Spectral pre-saturation seems preferred for coronary MRA applications due to the ease of implementation and the shorter cardiac acquisition window.
MRI of coronary vessel walls using radial k-space sampling and steady-state free precession imaging.
Resumo:
OBJECTIVE: The objective of our study was to investigate the impact of radial k-space sampling and steady-state free precession (SSFP) imaging on image quality in MRI of coronary vessel walls. SUBJECTS AND METHODS: Eleven subjects were examined on a 1.5-T MR system using three high-resolution navigator-gated and cardiac-triggered 3D black blood sequences (cartesian gradient-echo [GRE], radial GRE, and radial SSFP) with identical spatial resolution (0.9 x 0.9 x 2.4 mm3). The signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), vessel wall sharpness, and motion artifacts were analyzed. RESULTS: The mean SNR and CNR of the coronary vessel wall were improved using radial imaging and were best using radial k-space sampling combined with SSFP imaging. Vessel border definition was similar for all three sequences. Radial k-space sampling was found to be less sensitive to motion. Consistently good image quality was seen with the radial GRE sequence. CONCLUSION: Radial k-space sampling in MRI of coronary vessel walls resulted in fewer motion artifacts and improved SNR and CNR. The use of SSFP imaging, however, did not result in improved coronary vessel wall visualization.
Resumo:
A family history of coronary artery disease (CAD), especially when the disease occurs at a young age, is a potent risk factor for CAD. DNA collection in families in which two or more siblings are affected at an early age allows identification of genetic factors for CAD by linkage analysis. We performed a genomewide scan in 1,168 individuals from 438 families, including 493 affected sibling pairs with documented onset of CAD before 51 years of age in men and before 56 years of age in women. We prospectively defined three phenotypic subsets of families: (1) acute coronary syndrome in two or more siblings; (2) absence of type 2 diabetes in all affected siblings; and (3) atherogenic dyslipidemia in any one sibling. Genotypes were analyzed for 395 microsatellite markers. Regions were defined as providing evidence for linkage if they provided parametric two-point LOD scores >1.5, together with nonparametric multipoint LOD scores >1.0. Regions on chromosomes 3q13 (multipoint LOD = 3.3; empirical P value <.001) and 5q31 (multipoint LOD = 1.4; empirical P value <.081) met these criteria in the entire data set, and regions on chromosomes 1q25, 3q13, 7p14, and 19p13 met these criteria in one or more of the subsets. Two regions, 3q13 and 1q25, met the criteria for genomewide significance. We have identified a region on chromosome 3q13 that is linked to early-onset CAD, as well as additional regions of interest that will require further analysis. These data provide initial areas of the human genome where further investigation may reveal susceptibility genes for early-onset CAD.
Resumo:
BACKGROUND/AIMS: The present report examines a new pig model for progressive induction of high-grade stenosis, for the study of chronic myocardial ischemia and the dynamics of collateral vessel growth. METHODS: Thirty-nine Landrace pigs were instrumented with a novel experimental stent (GVD stent) in the left anterior descending coronary artery. Eight animals underwent transthoracic echocardiography at rest and under low-dose dobutamine. Seven animals were examined by nuclear PET and SPECT analysis. Epi-, mid- and endocardial fibrosis and the numbers of arterial vessels were examined by histology. RESULTS: Functional analysis showed a significant decrease in global left ventricular ejection fraction (24.5 +/- 1.6%) 3 weeks after implantation. There was a trend to increased left ventricular ejection fraction after low-dose dobutamine stress (36.0 +/- 6.6%) and a significant improvement of the impaired regional anterior wall motion. PET and SPECT imaging documented chronic hibernation. Myocardial fibrosis increased significantly in the ischemic area with a gradient from epi- to endocardial. The number of arterial vessels in the ischemic area increased and coronary angiography showed abundant collateral vessels of Rentrop class 1. CONCLUSION: The presented experimental model mimics the clinical situation of chronic myocardial ischemia secondary to 1-vessel coronary disease.
Resumo:
Creatine deficiency syndromes, due to deficiencies in AGAT, GAMT (creatine synthesis pathway) or SLC6A8 (creatine transporter), lead to complete absence or very strong decrease of creatine in CNS as measured by magnetic resonance spectroscopy. Brain is the main organ affected in creatine-deficient patients, who show severe neurodevelopmental delay and present neurological symptoms in early infancy. AGAT- and GAMT-deficient patients can be treated by oral creatine supplementation which improves their neurological status, while this treatment is inefficient on SLC6A8-deficient patients. While it has long been thought that most, if not all, of brain creatine was of peripheral origin, the past years have brought evidence that creatine can cross blood-brain barrier, however, only with poor efficiency, and that CNS must ensure parts of its creatine needs by its own endogenous synthesis. Moreover, we showed very recently that in many brain structures, including cortex and basal ganglia, AGAT and GAMT, while found in every brain cell types, are not co-expressed but are rather expressed in a dissociated way. This suggests that to allow creatine synthesis in these structures, guanidinoacetate must be transported from AGAT- to GAMT-expressing cells, most probably through SLC6A8. This new understanding of creatine metabolism and transport in CNS will not only allow a better comprehension of brain consequences of creatine deficiency syndromes, but will also contribute to better decipher creatine roles in CNS, not only in energy as ATP regeneration and buffering, but also in its recently suggested functions as neurotransmitter or osmolyte.
Resumo:
The electrical stimulation of the dorsal columns of the spinal cord exerts a dual analgesic and vasodilatory effect on ischemic tissues. It is increasingly considered a valuable method to treat severe and otherwise intractable coronary and peripheral artery disease. The quality of the results depends from both a strict selection of the patients by vascular specialists and the frequency and quality of the follow-up controls. However the indications, limits, mode of action and results of spinal cord stimulation are still poorly understood. This article, based on a personal experience of 164 implantations for peripheral and coronary artery disease, aims to draw attention to this technique and to provide information on recent and future developments.
Resumo:
Background: C-reactive protein (CRP) is associated with risk of coronary heart disease (CHD). Whether CRP is causally associated with CHD or merely a marker of underlying atherosclerosis is uncertain. Methods: We used a Mendelian randomisation design to investigate the causal relationship of CRP with CHD. We identified three genetic variants in the CRP locus (rs7553007, rs1130864 and rs1205) which influence CRP levels. We tested the three SNPs for association with CHD amongst 28,112 CHD cases and 100,823 controls. We then compared the observed relationship between the SNPs and CHD, with that predicted from the association of SNPs with CRP levels, and of CRP levels with CHD. Results: SNPs in the CRP locus were not associated with CHD: rs7553007, OR 0.98 (95% CI, 0.94-1.01); rs1130864, OR 1.00 (95% CI, 0.86-1.15); rs1205, OR 1.03 (95% CI, 0.99-1.07); combined OR for all three SNPs, 1.00 (95% CI, 0.97-1.02), per 20% lower CRP (figure). In contrast, the predicted OR for CHD from a 20% lower CRP level is 0.94 (95% CI, 0.94- 0.95), based on meta-analysis of observational studies. Conclusions: Though CRP variants are associated with CRP levels, and CRP levels with risk of CHD, we observed that CRP variants are not associated with CHD risk. Our Mendelian randomisation experiment strongly argues against a causal association of CRP with CHD.