294 resultados para Carotid resistance
Resumo:
The object of this study was to evaluate the contribution of carotid distensibilty on baroreflex sensitivity in patients with type 2 diabetes mellitus with at least 2 additional cardiovascular risk factors. Carotid distensibility was measured bilaterally at the common carotid artery in 79 consecutive diabetic patients and 60 matched subjects without diabetes. Spontaneous baroreflex sensitivity assessment was obtained using time and frequency methods. Baroreflex sensitivity was lower in diabetic subjects as compared with nondiabetic control subjects (5.25+/-2.80 ms/mm Hg versus 7.55+/-3.79 ms/mm Hg; P<0.01, respectively). Contrary to nondiabetic subjects, diabetic subjects showed no significant correlation between carotid distensibility and baroreflex sensitivity (r2=0.08, P=0.04 and r2=0.04, P=0.13, respectively). In diabetic subjects, baroreflex sensitivity was significantly lower in subjects with peripheral neuropathy than in those with preserved vibration sensation (4.1+/-0.5 versus 6.1+/-0.4 ms/mm Hg, respectively; P=0.005). Age in nondiabetic subjects, diabetes duration, systolic blood pressure, peripheral or sensitive neuropathy, and carotid distensibility were introduced in a stepwise multivariate analysis to identify the determinants of baroreflex sensitivity. In diabetic patients, neuropathy is a more sensitive determinant of baroreflex sensitivity than the reduced carotid distensibility (stepwise analysis; F ratio=5.1, P=0.028 versus F ratio=1.9, P=0.16, respectively). In diabetic subjects with 2 additional cardiovascular risk factors, spontaneous baroreflex sensitivity is not related to carotid distensibility. Diabetic subjects represent a particular population within the spectrum of cardiovascular risk situations because of the marked neuropathy associated with their metabolic disorder. Therefore, neuropathy is a more significant determinant of baroreflex sensitivity than carotid artery elasticity in patients with type 2 diabetes.
Resumo:
Extracranial carotid aneurysm is a rare vascular manifestation of Behçet disease. To our knowledge, only 32 cases have been reported. This article presents a complex case of a 28-year-old man who was first treated by vein graft reconstruction. At 12 months of follow-up, a nonanastomotic false aneurysm of the vein graft occurred and was treated by interposition of prosthetic graft. Two months later, an anastomotic pseudoaneurysm between the two grafts was excluded by two stent grafts. Based on our experience and a review of the literature, we compared the outcomes of prosthetic and autologous vein reconstructions and discussed the role of carotid ligation and immunosuppressive treatment.
Resumo:
The widespread misuse of drugs has increased the number of multiresistant bacteria, and this means that tools that can rapidly detect and characterize bacterial response to antibiotics are much needed in the management of infections. Various techniques, such as the resazurin-reduction assays, the mycobacterial growth indicator tube or polymerase chain reaction-based methods, have been used to investigate bacterial metabolism and its response to drugs. However, many are relatively expensive or unable to distinguish between living and dead bacteria. Here we show that the fluctuations of highly sensitive atomic force microscope cantilevers can be used to detect low concentrations of bacteria, characterize their metabolism and quantitatively screen (within minutes) their response to antibiotics. We applied this methodology to Escherichia coli and Staphylococcus aureus, showing that live bacteria produced larger cantilever fluctuations than bacteria exposed to antibiotics. Our preliminary experiments suggest that the fluctuation is associated with bacterial metabolism.
Resumo:
Introduction: Trastuzumab (T) is a cornerstone in the treatment of patients with HER2-overexpressing advanced breast cancer and development of resistance to T is a major therapeutic problem. HER-2 is part of a highly interactive signaling network that may impair efficacy of endocrine therapy. A sequential treatment design was chosen in this trial to ensure complete resistance to single agent therapy before receiving both a non-steroidal aromatase inhibitor (AI) and T. Any kind of clinical activity with combined treatment of AI and T after progression of single agent treatments could indicate restoration of sensitivity as a consequence of cross-talking and networking between both pathways. Methods: Key eligibility criteria included postmenopausal patients (pts.) with advanced, measurable, HER-2 positive (assessed by FISH, ratio (≥2)), HR positive disease and progression on prior treatment with a non-steroidal AI, e.g. letrozole or anastrozole, either in an adjuvant or advanced setting. Pts. received standard dose T monotherapy either weekly or three-weekly in step 1 and upon disease progression, continued T in combination with letrozole in step 2. The primary endpoint was clinical benefit response (CBR: CR, PR or SD for at least 24 weeks (+/- 1 week) according to RECIST) in step 2. Results: Thirteen pts. were enrolled in five centers in Switzerland. In step 1, six pts. (46%) achieved CBR. Median time to progression (TTP) was 161 days (Range: 50 - 627). Based on data collected until the end of May 2010, CBR was observed in seven out of the eleven evaluable pts. (64%) in step 2, including one pt. with partial response. Four of the seven pts. within step 2 that achieved CBR also had CBR in step 1. Seven out of eleven pts. have documented tumor progression during step 2 treatment. Median TTP for all eleven pts. was 184 days (range 61 - 471). Mean time on study treatment (TTP in step 1 plus TTP in step 2) for pts. reaching step 2 was 380 days (range 174 - 864). Adverse events were generally mild. Conclusion: Results of this proof-of-principle trial suggest that complete resistance to both AI and T can be overcome in a proportion of pts. by combined treatment of AI and T, as all pts. served as their own control. Our results appear promising for a new treatment strategy which offers a chemotherapy-free and well-tolerated option for at least a subset of the pts. with HR positive, HER-2 positive breast cancer. Further trials will need to corroborate this finding.
Resumo:
Treatment options for chronic hepatitis B have significantly expanded over the last decade. Six nucleoside or nucleotide analogs (NA) with activity against the hepatitis B virus are currently available. Prolonged NA treatment is required in many cases to maintain viral suppression, with an inherent risk of the development of antiviral resistance. The purpose of this concise review is to provide an introduction to the prevention, diagnosis and management of antiviral resistance in chronic hepatitis B.
Resumo:
The combination of pain, ipsilateral oculosympathetic defect (ptosis and miosis), and ipsilateral trigeminal dysfunction constitutes Raeder's syndrome. We describe a patient with an acute presentation of Raeder's syndrome due to spontaneous internal carotid artery dissection. True trigeminal dysfunction due to carotid dissection is rare, and the potential mechanisms for its involvement are reviewed in this paper. Finally, we remind clinicians to consider dissection in the differential diagnosis of Raeder's syndrome because of its potential for ischemic cerebral neurologic sequelae and suggest early cranial and neck imaging in the evaluation of such patients.
Resumo:
Pseudomonas aeruginosa chronic lung infections are the leading cause of mortality in cystic fibrosis patients, a serious problem which is notably due to the numerous P. aeruginosa virulence factors, to its ability to form biofilms and to resist the effects of most antibiotics. Production of virulence factors and biofilm formation by P. aeruginosa is highly coordinated through complex regulatory systems. We recently found that CzcRS, the zinc and cadmium-specific two-component system is not only involved in metal resistance, but also in virulence and carbapenem antibiotic resistance in P. aeruginosa. Interestingly, zinc has been shown to be enriched in the lung secretions of cystic fibrosis patients. In this study, we investigated whether zinc might favor P. aeruginosa pathogenicity using an artificial sputum medium to mimic the cystic fibrosis lung environment. Our results show that zinc supplementation triggers a dual P. aeruginosa response: (i) it exacerbates pathogenicity by a CzcRS two-component system-dependent mechanism and (ii) it stimulates biofilm formation by a CzcRS-independent mechanism. Furthermore, P. aeruginosa cells embedded in these biofilms exhibited increased resistance to carbapenems. We identified a novel Zn-sensitive regulatory circuit controlling the expression of the OprD porin and modifying the carbapenem resistance profile. Altogether our data demonstrated that zinc levels in the sputum of cystic fibrosis patients might aggravate P. aeruginosa infection. Targeting zinc levels in sputum would be a valuable strategy to curb the increasing burden of P. aeruginosa infections in cystic fibrosis patients.
Resumo:
Objectives: Patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED, APS-I) suffer from chronic candidosis caused mainly by Candida albicans, and repeated courses of azole antifungals have led to the development of resistance in the APECED patient population in Finland. The aim of our study was to address whether the patients are persistently colonized with the same or genetically closely related strains, whether epidemic strains are present and which molecular mechanisms account for azole resistance. Methods: Sets of C. albicans (n?=?19) isolates from nine APECED patients reported with decreased susceptibility to fluconazole isolated up to 9 years apart were included. The strains were typed by multilocus sequence typing. CDR1/2, MDR1 and ERG11 mRNA expression was analysed by northern blotting and Cdr1, Cdr2 and Mdr1 protein expression by western blotting, and TAC1 and ERG11 genes were sequenced. Results: All seven patients with multiple C. albicans isolates analysed were persistently colonized with the same or a genetically closely related strain for a mean of 5 years. All patients were colonized with different strains and no epidemic strains were found. The major molecular mechanisms behind the azole resistance were mutations in TAC1 contributing to overexpression of CDR1 and CDR2. Six new TAC1 mutations were found, one of which (N740S) is likely to be a gain-of-function mutation. Most isolates were found to have gained multiple TAC1 and ERG11 point mutations. Conclusions: Despite clinically successful treatment leading to relief of symptoms, colonization by C. albicans strains is persistent within APECED patients. Microevolution and point mutations occur within strains, leading to the development of azole-resistant isolates.
Resumo:
A strain of avian influenza A virus was adapted to grow in mouse peritoneal macrophages in vitro. The adapted strain, called M-TUR, induced a marked cytopathic effect in macrophages from susceptible mice. Mice homozygous (A2G) or heterozygous (F1 hybrids between A2G and several susceptible strains) for the gene Mx, shown previously to induce a high level of resistance towards lethal challenge by a number of myxoviruses in vivo, yielded peritoneal macrophages which were not affected by M-TUR. Peritoneal macrophages could be classified as resistant or susceptible to M-TUR without sacrificing the cell donor. Backcrosses were arranged between (A2G X A/J)F1 and A/J mice. 64 backcross animals could be tested individually both for resistance of their macrophages in vitro after challenge with M-TUR, and for resistance of the whole animal in vivo after challenge with NWS (a neurotropic variant of human influenza A virus). Macrophages from 36 backcross mice were classified as susceptible, and all of these mice died after challenge. Macrophages from 28 mice were classified as resistant, and 26 mice survived challenge. We conclude that resistance of macrophages and resistance of the whole animal are two facets of the same phenomenon.
Resumo:
Epidemiological studies demonstrate an association between insulin resistance, hypertension and cardiovascular morbidity. In addition to its metabolic effects, insulin also has important cardiovascular actions. The sympathetic nervous system and the nitric oxide-l-arginine pathway have emerged as central players in the mediation of these actions. Over the past decade, the underlying mechanisms and the factors that may govern the interaction between insulin and these two major cardiovascular regulatory systems have been studied extensively in healthy people and insulin-resistant individuals. Here we summarize the current understanding and gaps in knowledge on these interactions. We propose that a genetic and/or acquired defect of nitric oxide synthesis could represent a central defect triggering many of the metabolic, vascular and sympathetic abnormalities characteristic of insulin-resistant states, all of which may predispose to cardiovascular disease.
Resumo:
Transmission of drug-resistant pathogens presents an almost-universal challenge for fighting infectious diseases. Transmitted drug resistance mutations (TDRM) can persist in the absence of drugs for considerable time. It is generally believed that differential TDRM-persistence is caused, at least partially, by variations in TDRM-fitness-costs. However, in vivo epidemiological evidence for the impact of fitness costs on TDRM-persistence is rare. Here, we studied the persistence of TDRM in HIV-1 using longitudinally-sampled nucleotide sequences from the Swiss-HIV-Cohort-Study (SHCS). All treatment-naïve individuals with TDRM at baseline were included. Persistence of TDRM was quantified via reversion rates (RR) determined with interval-censored survival models. Fitness costs of TDRM were estimated in the genetic background in which they occurred using a previously published and validated machine-learning algorithm (based on in vitro replicative capacities) and were included in the survival models as explanatory variables. In 857 sequential samples from 168 treatment-naïve patients, 17 TDRM were analyzed. RR varied substantially and ranged from 174.0/100-person-years;CI=[51.4, 588.8] (for 184V) to 2.7/100-person-years;[0.7, 10.9] (for 215D). RR increased significantly with fitness cost (increase by 1.6[1.3,2.0] per standard deviation of fitness costs). When subdividing fitness costs into the average fitness cost of a given mutation and the deviation from the average fitness cost of a mutation in a given genetic background, we found that both components were significantly associated with reversion-rates. Our results show that the substantial variations of TDRM persistence in the absence of drugs are associated with fitness-cost differences both among mutations and among different genetic backgrounds for the same mutation.
Resumo:
We studied whether PPARβ/δ deficiency modifies the effects of high fructose intake (30% fructose in drinking water) on glucose tolerance and adipose tissue dysfunction, focusing on the CD36-dependent pathway that enhances adipose tissue inflammation and impairs insulin signaling. Fructose intake for 8weeks significantly increased body and liver weight, and hepatic triglyceride accumulation in PPARβ/δ-deficient mice but not in wild-type mice. Feeding PPARβ/δ-deficient mice with fructose exacerbated glucose intolerance and led to macrophage infiltration, inflammation, enhanced mRNA and protein levels of CD36, and activation of the JNK pathway in white adipose tissue compared to those of water-fed PPARβ/δ-deficient mice. Cultured adipocytes exposed to fructose also exhibited increased CD36 protein levels and this increase was prevented by the PPARβ/δ activator GW501516. Interestingly, the levels of the nuclear factor E2-related factor 2 (Nrf2), a transcription factor reported to up-regulate Cd36 expression and to impair insulin signaling, were increased in fructose-exposed adipocytes whereas co-incubation with GW501516 abolished this increase. In agreement with Nrf2 playing a role in the fructose-induced CD36 protein level increases, the Nrf2 inhibitor trigonelline prevented the increase and the reduction in insulin-stimulated AKT phosphorylation caused by fructose in adipocytes. Protein levels of the well-known Nrf2 target gene NAD(P)H: quinone oxidoreductase 1 (Nqo1) were increased in water-fed PPARβ/δ-null mice, suggesting that PPARβ/δ deficiency increases Nrf2 activity; and this increase was exacerbated in fructose-fed PPARβ/δ-deficient mice. These findings indicate that the combination of high fructose intake and PPARβ/δ deficiency increases CD36 protein levels via Nrf2, a process that promotes chronic inflammation and insulin resistance in adipose tissue.
Resumo:
PURPOSE: To optimize and preliminarily evaluate a three-dimensional (3D) radial balanced steady-state free precession (bSSFP) arterial spin labeled (ASL) sequence for nonenhanced MR angiography (MRA) of the extracranial carotid arteries. MATERIALS AND METHODS: The carotid arteries of 13 healthy subjects and 2 patients were imaged on a 1.5 Tesla MRI system using an undersampled 3D radial bSSFP sequence providing a scan time of ∼4 min and 1 mm(3) isotropic resolution. A hybridized scheme that combined pseudocontinuous and pulsed ASL was used to maximize arterial coverage. The impact of a post label delay period, the sequence repetition time, and radiofrequency (RF) energy configuration of pseudocontinuous labeling on the display of the carotid arteries was assessed with contrast-to-noise ratio (CNR) measurements. Faster, higher undersampled 2 and 1 min scans were tested. RESULTS: Using hybridized ASL MRA and a 3D radial bSSFP trajectory, arterial CNR was maximized with a post label delay of 0.2 s, repetition times ≥ 2.5 s (P < 0.05), and by eliminating RF energy during the pseudocontinuous control phase (P < 0.001). With higher levels of undersampling, the carotid arteries were displayed in ≤ 2 min. CONCLUSION: Nonenhanced MRA using hybridized ASL with a 3D radial bSSFP trajectory can display long lengths of the carotid arteries with 1 mm(3) isotropic resolution. J. Magn. Reson. Imaging 2015;41:1150-1156. © 2014 Wiley Periodicals, Inc.
Resumo:
MAF1 is a global repressor of RNA polymerase III transcription that regulates the expression of highly abundant noncoding RNAs in response to nutrient availability and cellular stress. Thus, MAF1 function is thought to be important for metabolic economy. Here we show that a whole-body knockout of Maf1 in mice confers resistance to diet-induced obesity and nonalcoholic fatty liver disease by reducing food intake and increasing metabolic inefficiency. Energy expenditure in Maf1(-/-) mice is increased by several mechanisms. Precursor tRNA synthesis was increased in multiple tissues without significant effects on mature tRNA levels, implying increased turnover in a futile tRNA cycle. Elevated futile cycling of hepatic lipids was also observed. Metabolite profiling of the liver and skeletal muscle revealed elevated levels of many amino acids and spermidine, which links the induction of autophagy in Maf1(-/-) mice with their extended life span. The increase in spermidine was accompanied by reduced levels of nicotinamide N-methyltransferase, which promotes polyamine synthesis, enables nicotinamide salvage to regenerate NAD(+), and is associated with obesity resistance. Consistent with this, NAD(+) levels were increased in muscle. The importance of MAF1 for metabolic economy reveals the potential for MAF1 modulators to protect against obesity and its harmful consequences.