356 resultados para Binding-Kinetics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The alpha1B-adrenergic receptor (alpha1BAR), its truncated mutant T368, different G protein-coupled receptor kinases (GRK) and arrestin proteins were transiently expressed in COS-7 or HEK293 cells alone and/or in various combinations. Coexpression of beta-adrenergic receptor kinase (betaARK) 1 (GRK2) or 2 (GRK3) could increase epinephrine-induced phosphorylation of the wild type alpha1BAR above basal as compared to that of the receptor expressed alone. On the other hand, overexpression of the dominant negative betaARK (K220R) mutant impaired agonist-induced phosphorylation of the receptor. Overexpression of GRK6 could also increase epinephrine-induced phosphorylation of the receptor, whereas GRK5 enhanced basal but not agonist-induced phosphorylation of the alpha1BAR. Increasing coexpression of betaARK1 or betaARK2 resulted in the progressive attenuation of the alpha1BAR-mediated response on polyphosphoinositide (PI) hydrolysis. However, coexpression of betaARK1 or 2 at low levels did not significantly impair the PI response mediated by the truncated alpha1BAR mutant T368, lacking the C terminus, which is involved in agonist-induced desensitization and phosphorylation of the receptor. Similar attenuation of the receptor-mediated PI response was also observed for the wild type alpha1BAR, but not for its truncated mutant, when the receptor was coexpressed with beta-arrestin 1 or beta-arrestin 2. Despite their pronounced effect on phosphorylation of the alpha1BAR, overexpression of GRK5 or GRK6 did not affect the receptor-mediated response. In conclusion, our results provide the first evidence that betaARK1 and 2 as well as arrestin proteins might be involved in agonist-induced regulation of the alpha1BAR. They also identify the alpha1BAR as a potential phosphorylation substrate of GRK5 and GRK6. However, the physiological implications of GRK5- and GRK6-mediated phosphorylation of the alpha1BAR remain to be elucidated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synaptic transmission depends critically on the Sec1p/Munc18 protein Munc18-1, but it is unclear whether Munc18-1 primarily operates as a integral part of the fusion machinery or has a more upstream role in fusion complex assembly. Here, we show that point mutations in Munc18-1 that interfere with binding to the free Syntaxin1a N-terminus and strongly impair binding to assembled SNARE complexes all support normal docking, priming and fusion of synaptic vesicles, and normal synaptic plasticity in munc18-1 null mutant neurons. These data support a prevailing role of Munc18-1 before/during SNARE-complex assembly, while its continued association to assembled SNARE complexes is dispensable for synaptic transmission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Medical implants, like cardiovascular devices, improve the quality of life for countless individuals but may become infected with bacteria like Staphylococcus aureus. Such infections take the form of a biofilm, a structured community of bacterial cells adherent to the surface of a solid substrate. Every biofilm begins with an attractive force or bond between bacterium and substratum. We used atomic force microscopy to probe experimentally forces between a fibronectin-coated surface (i.e., proxy for an implanted cardiac device) and fibronectin-binding receptors on the surface of individual living bacteria from each of 80 clinical isolates of S. aureus. These isolates originated from humans with infected cardiac devices (CDI; n = 26), uninfected cardiac devices (n = 20), and the anterior nares of asymptomatic subjects (n = 34). CDI isolates exhibited a distinct binding-force signature and had specific single amino acid polymorphisms in fibronectin-binding protein A corresponding to E652D, H782Q, and K786N. In silico molecular dynamics simulations demonstrate that residues D652, Q782, and N786 in fibronectin-binding protein A form extra hydrogen bonds with fibronectin, complementing the higher binding force and energy measured by atomic force microscopy for the CDI isolates. This study is significant, because it links pathogenic bacteria biofilms from the length scale of bonds acting across a nanometer-scale space to the clinical presentation of disease at the human dimension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was designed to test the hypothesis that subjects having faster oxygen uptake (VO(2)) kinetics during off-transients to exercises of severe intensity would obtain the smallest decrement score during a repeated sprint test. Twelve male soccer players completed a graded test, two severe-intensity exercises, followed by 6 min of passive recovery, and a repeated sprint test, consisting of seven 30-m sprints alternating with 20 s of active recovery. The relative decrease in score during the repeated sprint test was positively correlated with time constants of the primary phase for the VO(2) off-kinetics (r = 0.85; p < 0.001) and negatively correlated with the VO(2) peak (r = -0.83; p < 0.001). These results strengthen the link found between VO(2) kinetics and the ability to maintain sprint performance during repeated sprints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: NR2E3 (PNR) is an orphan nuclear receptor essential for proper photoreceptor determination and differentiation. In humans, mutations in NR2E3 have been associated with the recessively inherited enhanced short wavelength sensitive (S-) cone syndrome (ESCS) and, more recently, with autosomal dominant retinitis pigmentosa (adRP). NR2E3 acts as a suppressor of the cone generation program in late mitotic retinal progenitor cells. In adult rod photoreceptors, NR2E3 represses cone-specific gene expression and acts in concert with the transcription factors CRX and NRL to activate rod-specific genes. NR2E3 and CRX have been shown to physically interact in vitro through their respective DNA-binding domains (DBD). The DBD also contributes to homo- and heterodimerization of nuclear receptors. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed NR2E3 homodimerization and NR2E3/CRX complex formation in an in vivo situation by Bioluminescence Resonance Energy Transfer (BRET(2)). NR2E3 wild-type protein formed homodimers in transiently transfected HEK293T cells. NR2E3 homodimerization was impaired in presence of disease-causing mutations in the DBD, except for the p.R76Q and p.R104W mutant proteins. Strikingly, the adRP-linked p.G56R mutant protein interacted with CRX with a similar efficiency to that of NR2E3 wild-type and p.R311Q proteins. In contrast, all other NR2E3 DBD-mutant proteins did not interact with CRX. The p.G56R mutant protein was also more effective in abolishing the potentiation of rhodospin gene transactivation by the NR2E3 wild-type protein. In addition, the p.G56R mutant enhanced the transrepression of the M- and S-opsin promoter, while all other NR2E3 DBD-mutants did not. CONCLUSIONS/SIGNIFICANCE: These results suggest different disease mechanisms in adRP- and ESCS-patients carrying NR2E3 mutations. Titration of CRX by the p.G56R mutant protein acting as a repressor in trans may account for the severe clinical phenotype in adRP patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study aimed to examine the effects of a prior 1-hour continuous exercise bout (CONT) at an intensity (Fat(max)) that elicits the maximal fat oxidation (MFO) on the fat oxidation kinetics during a subsequent submaximal incremental test (IncrC). Twenty moderately trained subjects (9 men and 11 women) performed a graded test on a treadmill (Incr), with 3-minute stages and 1-km.h(-1) increments. Fat oxidation was measured using indirect calorimetry and plotted as a function of exercise intensity. A mathematical model (SIN) including 3 independent variables (dilatation, symmetry, and translation) was used to characterize the shape of fat oxidation kinetics and to determine Fat(max) and MFO. On a second visit, the subjects performed CONT at Fat(max) followed by IncrC. After CONT performed at 57% +/- 3% (means +/- SE) maximal oxygen uptake (Vo(2max)), the respiratory exchange ratio during IncrC was lower at every stage compared with Incr (P < .05). Fat(max) (56.4% +/- 2.3% vs 51.5% +/- 2.4% Vo(2max), P = .013), MFO (0.50 +/- 0.03 vs 0.40 +/- 0.03 g.min(-1), P < .001), and fat oxidation rates from 35% to 70% Vo(2max) (P < .05) were significantly greater during IncrC compared with Incr. However, dilatation and translation were not significantly different (P > .05), whereas symmetry tended to be greater in IncrC (P = .096). This study showed that the prior 1-hour continuous moderate-intensity exercise bout increased Fat(max), MFO, and fat oxidation rates over a wide range of intensities during the postexercise incremental test. Moreover, the shape of the postexercise fat oxidation kinetics tended to have a rightward asymmetry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The S- and F-forms of alpha-1 acid glycoprotein (AAG) variants have been isolated by isoelectric focusing with immobilines from commercially available AAG. In equilibrium dialysis experiments using a multicompartmental system, a higher affinity for various basic drugs has been found with S- in comparison with F-AAG: Amitriptyline, nortriptyline, imipramine, desipramine, trimipramine, methadone, thioridazine, clomipramine, desmethylclomipramine, and maprotiline. The selectivity (binding to S- vs. F-AAG) is the most pronounced for methadone and the lowest for thioridazine, while it is absent for the acidic drug mephenytoin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ten years ago, the first cellular receptor for the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) and the highly pathogenic Lassa virus (LASV) was identified as alpha-dystroglycan (alpha-DG), a versatile receptor for proteins of the extracellular matrix (ECM). Biochemical analysis of the interaction of alpha-DG with arenaviruses and ECM proteins revealed a strikingly similar mechanism of receptor recognition that critically depends on specific sugar modification on alpha-DG involving a novel class of putative glycosyltransferase, the LARGE proteins. Interestingly, recent genome-wide detection and characterization of positive selection in human populations revealed evidence for positive selection of a locus within the LARGE gene in populations from Western Africa, where LASV is endemic. While most enveloped viruses that enter the host cell in a pH-dependent manner use clathrin-mediated endocytosis, recent studies revealed that the Old World arenaviruses LCMV and LASV enter the host cell predominantly via a novel and unusual endocytotic pathway independent of clathrin, caveolin, dynamin, and actin. Upon internalization, the virus is rapidly delivered to endosomes via an unusual route of vesicular trafficking that is largely independent of the small GTPases Rab5 and Rab7. Since infection of cells with LCMV and LASV depends on DG, this unusual endocytotic pathway could be related to normal cellular trafficking of the DG complex. Alternatively, engagement of arenavirus particles may target DG for an endocytotic pathway not normally used in uninfected cells thereby inducing an entry route specifically tailored to the pathogen's needs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

B lymphocytes are among the first cells to be infected by mouse mammary tumor virus (MMTV), and they play a crucial role in its life cycle. To study transcriptional regulation of MMTV in B cells, we have analyzed two areas of the long terminal repeat (LTR) next to the glucocorticoid receptor binding site, fp1 (at position -139 to -146 from the cap site) and fp2 (at -157 to -164). Both showed B-cell-specific protection in DNase I in vitro footprinting assays and contain binding sites for Ets transcription factors, a large family of proteins involved in cell proliferation and differentiation and oncogenic transformation. In gel retardation assays, fp1 and fp2 bound the heterodimeric Ets factor GA-binding protein (GABP) present in B-cell nuclear extracts, which was identified by various criteria: formation of dimers and tetramers, sensitivity to pro-oxidant conditions, inhibition of binding by specific antisera, and comigration of complexes with those formed by recombinant GABP. Mutations which prevented complex formation in vitro abolished glucocorticoid-stimulated transcription from an MMTV LTR linked to a reporter gene in transiently transfected B-cell lines, whereas they did not affect the basal level. Exogenously expressed GABP resulted in an increased level of hormone response of the LTR reporter plasmid and produced a synergistic effect with the coexpressed glucocorticoid receptor, indicating cooperation between the two. This is the first example of GABP cooperation with a steroid receptor, providing the opportunity for studying the integration of their intracellular signaling pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recognition by the T-cell receptor (TCR) of immunogenic peptides (p) presented by class I major histocompatibility complexes (MHC) is the key event in the immune response against virus infected cells or tumor cells. The major determinant of T cell activation is the affinity of the TCR for the peptide-MHC complex, though kinetic parameters are also important. A study of the 2C TCR/SIYR/H-2Kb system using a binding free energy decomposition (BFED) based on the MM-GBSA approach had been performed to assess the performance of the approach on this system. The results showed that the TCR-p-MHC BFED including entropic terms provides a detailed and reliable description of the energetics of the interaction (Zoete and Michielin, 2007). Based on these results, we have developed a new approach to design sequence modifications for a TCR recognizing the human leukocyte antigen (HLA)-A2 restricted tumor epitope NY-ESO-1. NY-ESO-1 is a cancer testis antigen expressed not only in melanoma, but also on several other types of cancers. It has been observed at high frequencies in melanoma patients with unusually positive clinical outcome and, therefore, represents an interesting target for adoptive transfer with modified TCR. Sequence modifications of TCR potentially increasing the affinity for this epitope have been proposed and tested in vitro. T cells expressing some of the proposed TCR mutants showed better T cell functionality, with improved killing of peptide-loaded T2 cells and better proliferative capacity compared to the wild type TCR expressing cells. These results open the door of rational TCR design for adoptive transfer cancer therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies in Caenorhabditis elegans showed that RPM-1 (Regulator of Presynaptic Morphology-1) regulates axon termination and synapse formation. To understand the mechanism of how rpm-1 functions, we have used mass spectrometry to identify RPM-1 binding proteins, and have identified RAE-1 (RNA Export protein-1) as an evolutionarily conserved binding partner. We define a RAE-1 binding region in RPM-1, and show that this binding interaction is conserved and also occurs between Rae1 and the human ortholog of RPM-1 called Pam (protein associated with Myc). rae-1 loss of function causes similar axon and synapse defects, and synergizes genetically with two other RPM-1 binding proteins, GLO-4 and FSN-1. Further, we show that RAE-1 colocalizes with RPM-1 in neurons, and that rae-1 functions downstream of rpm-1. These studies establish a novel postmitotic function for rae-1 in neuronal development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IMPORTANCE OF THE FIELD: The permeability glycoprotein (P-gp) is an important protein transporter involved in the disposition of many drugs with different chemical structures, but few studies have examined a possible stereoselectivity in its activity. P-gp can have a major impact on the distribution of drugs in selected organs, including the brain. Polymorphisms of the ABCB1 gene, which encodes for P-gp, can influence the kinetics of several drugs. AREAS COVERED IN THIS REVIEW: A search including publications from 1990 up to 2009 was performed on P-gp stereoselectivity and on the impact of ABCB1 polymorphisms on enantiomer brain distribution. WHAT THE READER WILL GAIN: Despite stereoselectivity not being expected because of the large variability of chemical structures of P-gp substrates, structure-activity relationships suggest different P-gp-binding sites for enantiomers. Enantioselectivity in the activity of P-gp has been demonstrated by in vitro studies and in animal models (preferential transport of one enantiomer or different inhibitory potencies towards P-gp activity between enantiomers). There is also in vivo evidence of an enantioselective drug transport at the human blood-brain barrier. TAKE HOME MESSAGE: The significant enantioselective activity of P-gp might be clinically relevant and must be taken into account in future studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Passive immunization against β-amyloid (Aβ) has become an increasingly desirable strategy as a therapeutic treatment for Alzheimer's disease (AD). However, traditional passive immunization approaches carry the risk of Fcγ receptor-mediated overactivation of microglial cells, which may contribute to an inappropriate proinflammatory response leading to vasogenic edema and cerebral microhemorrhage. Here, we describe the generation of a humanized anti-Aβ monoclonal antibody of an IgG4 isotype, known as MABT5102A (MABT). An IgG4 subclass was selected to reduce the risk of Fcγ receptor-mediated overactivation of microglia. MABT bound with high affinity to multiple forms of Aβ, protected against Aβ1-42 oligomer-induced cytotoxicity, and increased uptake of neurotoxic Aβ oligomers by microglia. Furthermore, MABT-mediated amyloid plaque removal was demonstrated using in vivo live imaging in hAPP((V717I))/PS1 transgenic mice. When compared with a human IgG1 wild-type subclass, containing the same antigen-binding variable domains and with equal binding to Aβ, MABT showed reduced activation of stress-activated p38MAPK (p38 mitogen-activated protein kinase) in microglia and induced less release of the proinflammatory cytokine TNFα. We propose that a humanized IgG4 anti-Aβ antibody that takes advantage of a unique Aβ binding profile, while also possessing reduced effector function, may provide a safer therapeutic alternative for passive immunotherapy for AD. Data from a phase I clinical trial testing MABT is consistent with this hypothesis, showing no signs of vasogenic edema, even in ApoE4 carriers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Mannose binding lectin (MBL) is an innate humoral immune effector and MBL defi ciency has been suggested as a risk factor for the development of certain viral infections. However, there is no data about the possible association between MBL defi ciency and CMV, especially after organ transplantation. Methods: We measured MBL levels in 16 kidney transplant recipients with highrisk CMV serostatus (D+/R-) who received valganciclovir prophylaxis for 3 months (Study 1). In addition, MBL levels were retrospectively assayed in 55 recipients from a previous study of organ transplant recipients managed preemptively (Study 2). In Study 2, protracted CMV infection was associated with recipient CMV seronegativity, increasing age, and high viral load during the initial episode. In both studies, MBL defi ciency was diagnosed if MBL levels were <500 ng/ml. Results: In Study 1, after a follow-up of 12 months, 7 out of 16 patients developed CMV disease, 4 patients developed asymptomatic CMV infection, and 5 patients never developed any sign of CMV replication. Overall, 9/16 patients (56%) had MBL defi ciency: 5/7 (71%) of patients with CMV disease, 4/4 (100%) of patients with asymptomatic CMV infection, and 0/5 (0%) of patients without CMV infection (p=0.005, between CMV infection/disease versus no infection). Median MBL concentrations were higher in patients without CMV infection than in those with CMV infection (p<0.005). In Study 2, among 30 patients with CMV infection, 9/25 (36%) patients without MBL defi ciency had a protracted course, while 4/5 (80%) with MBL defi ciency did so (p=0.07). Conclusion: Data from two separate patient populations suggest that MBL defi ciency may be a signifi cant risk factor for late CMV disease/infection after prophylaxis, and protracted infection after preemptive treatment. This suggests a role for MBL in the control of CMV infection after organ transplantation.