268 resultados para B-Cell
Resumo:
T cell stimulation requires the input and integration of external signals. Signaling through the T cell receptor (TCR) is known to induce formation of the membrane-tethered CBM complex, comprising CARMA1, BCL10, and MALT1, which is required for TCR-mediated NF-κB activation. TCR signaling has been shown to activate NOTCH proteins, transmembrane receptors also implicated in NF-κB activation. However, the link between TCR-mediated NOTCH signaling and early events leading to induction of NF-κB activity remains unclear. In this report, we demonstrate a novel cytosolic function for NOTCH1 and show that it is essential to CBM complex formation. Using a model of skin allograft rejection, we show in vivo that NOTCH1 acts in the same functional pathway as PKCθ, a T cell-specific kinase important for CBM assembly and classical NF-κB activation. We further demonstrate in vitro NOTCH1 associates physically with PKCθ and CARMA1 in the cytosol. Unexpectedly, when NOTCH1 expression was abrogated using RNAi approaches, interactions between CARMA1, BCL10, and MALT1 were lost. This failure in CBM assembly reduced inhibitor of kappa B alpha phosphorylation and diminished NF-κB-DNA binding. Finally, using a luciferase gene reporter assay, we show the intracellular domain of NOTCH1 can initiate robust NF-κB activity in stimulated T cells, even when NOTCH1 is excluded from the nucleus through modifications that restrict it to the cytoplasm or hold it tethered to the membrane. Collectively, these observations provide evidence that NOTCH1 may facilitate early events during T cell activation by nucleating the CBM complex and initiating NF-κB signaling.
Resumo:
Bisphosphonates are potent inhibitors of osteoclast function widely used to treat conditions of excessive bone resorption, including tumor bone metastases. Recent evidence indicates that bisphosphonates have direct cytotoxic activity on tumor cells and suppress angiogenesis, but the associated molecular events have not been fully characterized. In this study we investigated the effects of zoledronate, a nitrogen-containing bisphosphonate, and clodronate, a non-nitrogen-containing bisphosphonate, on human umbilical vein endothelial cell (HUVEC) adhesion, migration, and survival, three events essential for angiogenesis. Zoledronate inhibited HUVEC adhesion mediated by integrin alphaVbeta3, but not alpha5beta1, blocked migration and disrupted established focal adhesions and actin stress fibers without modifying cell surface integrin expression level or affinity. Zoledronate treatment slightly decreased HUVEC viability and strongly enhanced tumor necrosis factor (TNF)-induced cell death. HUVEC treated with zoledronate and TNF died without evidence of enhanced annexin-V binding, chromatin condensation, or nuclear fragmentation and caspase dependence. Zoledronate inhibited sustained phosphorylation of focal adhesion kinase (FAK) and in combination with TNF, with and without interferon (IFN) gamma, of protein kinase B (PKB/Akt). Constitutive active PKB/Akt protected HUVEC from death induced by zoledronate and TNF/IFNgamma. Phosphorylation of c-Src and activation of NF-kappaB were not affected by zoledronate. Clodronate had no effect on HUVEC adhesion, migration, and survival nor did it enhanced TNF cytotoxicity. Taken together these data demonstrate that zoledronate sensitizes endothelial cells to TNF-induced, caspase-independent programmed cell death and point to the FAK-PKB/Akt pathway as a novel zoledronate target. These results have potential implications to the clinical use of zoledronate as an anti-angiogenic or anti-cancer agent.
Resumo:
Shedding of intercellular adhesion molecule 1 (ICAM-1) is believed to play a role in tumor cell resistance to cell-mediated cytotoxicity. However, the mechanism whereby ICAM-1 is shed from the surface of tumor cells remains unclear. In this study, we have addressed the possibility that matrix metalloproteinases are implicated in ICAM-1 shedding. Our observations suggest a functional relationship between ICAM-1 and matrix metalloproteinase 9 (MMP-9) whereby ICAM-1 provides a cell surface docking mechanism for proMMP-9, which, upon activation, proteolytically cleaves the extracellular domain of ICAM-1 leading to its release from the cell surface. MMP-9-dependent shedding of ICAM-1 is found to augment tumor cell resistance to natural killer (NK) cell-mediated cytotoxicity. Taken together, our observations propose a mechanism for ICAM-1 shedding from the cell surface and provide support for MMP involvement in tumor cell evasion of immune surveillance.
Resumo:
Background In angioimmunoblastic T-cell lymphoma, symptoms linked to B-lymphocyte activation are common, and variable numbers of CD20(+) large B-blasts, often infected by Epstein-Barr virus, are found in tumor tissues. We postulated that the disruption of putative B-T interactions and/or depletion of the Epstein-Barr virus reservoir by an anti-CD20 monoclonal antibody (rituximab) could improve the clinical outcome produced by conventional chemotherapy. DESIGN AND METHODS: Twenty-five newly diagnosed patients were treated, in a phase II study, with eight cycles of rituximab + chemotherapy (R-CHOP21). Tumor infiltration, B-blasts and Epstein-Barr virus status in tumor tissue and peripheral blood were fully characterized at diagnosis and were correlated with clinical outcome. RESULTS: A complete response rate of 44% (95% CI, 24% to 65%) was observed. With a median follow-up of 24 months, the 2-year progression-free survival rate was 42% (95% CI, 22% to 61%) and overall survival rate was 62% (95% CI, 40% to 78%). The presence of Epstein-Barr virus DNA in peripheral blood mononuclear cells (14/21 patients) correlated with Epstein-Barr virus score in lymph nodes (P<0.004) and the detection of circulating tumor cells (P=0.0019). Despite peripheral Epstein-Barr virus clearance after treatment, the viral load at diagnosis (>100 copy/μg DNA) was associated with shorter progression-free survival (P=0.06). Conclusions We report here the results of the first clinical trial targeting both the neoplastic T cells and the microenvironment-associated CD20(+) B lymphocytes in angioimmunoblastic T-cell lymphoma, showing no clear benefit of adding rituximab to conventional chemotherapy. A strong relationship, not previously described, between circulating Epstein-Barr virus and circulating tumor cells is highlighted.
Resumo:
The vaccinia virus (VACV) C6 protein has sequence similarities with the poxvirus family Pox_A46, involved in regulation of host immune responses, but its role is unknown. Here, we have characterized the C6 protein and its effects in virus replication, innate immune sensing and immunogenicity in vivo. C6 is a 18.2 kDa protein, which is expressed early during virus infection and localizes to the cytoplasm of infected cells. Deletion of the C6L gene from the poxvirus vector MVA-B expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (MVA-B ΔC6L) had no effect on virus growth kinetics; therefore C6 protein is not essential for virus replication. The innate immune signals elicited by MVA-B ΔC6L in human macrophages and monocyte-derived dendritic cells (moDCs) are characterized by the up-regulation of the expression of IFN-β and IFN-α/β-inducible genes. In a DNA prime/MVA boost immunization protocol in mice, flow cytometry analysis revealed that MVA-B ΔC6L enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4(+) and CD8(+) T-cell memory immune responses, with most of the HIV-1 responses mediated by the CD8(+) T-cell compartment with an effector phenotype. Significantly, while MVA-B induced preferentially Env- and Gag-specific CD8(+) T-cell responses, MVA-B ΔC6L induced more Gag-Pol-Nef-specific CD8(+) T-cell responses. Furthermore, MVA-B ΔC6L enhanced the levels of antibodies against Env in comparison with MVA-B. These findings revealed that C6 can be considered as an immunomodulator and that deleting C6L gene in MVA-B confers an immunological benefit by enhancing IFN-β-dependent responses and increasing the magnitude and quality of the T-cell memory immune responses to HIV-1 antigens. Our observations are relevant for the improvement of MVA vectors as HIV-1 vaccines.
Resumo:
Neutrophils are antigen-transporting cells that generate vaccinia virus (VACV)-specific T-cell responses, yet how VACV modulates neutrophil recruitment and its significance in the immune response are unknown. We generated an attenuated VACV strain that expresses HIV-1 clade C antigens but lacks three specific viral genes (A52R, K7R, and B15R). We found that these genes act together to inhibit the NFκB signaling pathway. Triple ablation in modified virus restored NFκB function in macrophages. After virus infection of mice, NFκB pathway activation led to expression of several cytokines/chemokines that increased the migration of neutrophil populations (Nα and Nβ) to the infection site. Nβ cells displayed features of antigen-presenting cells and activated virus-specific CD8 T cells. Enhanced neutrophil trafficking to the infection site correlated with an increased T-cell response to HIV vector-delivered antigens. These results identify a mechanism for poxvirus-induced immune response and alternatives for vaccine vector design.
Resumo:
The TNF family member receptor activator for NF-κB ligand (RANKL) and its receptors RANK and osteoprotegerin are key regulators of bone remodeling but also influence cellular functions of tumor and immune effector cells. In this work, we studied the involvement of RANK-RANKL interaction in NK cell-mediated immunosurveillance of acute myeloid leukemia (AML). Substantial levels of RANKL were found to be expressed on leukemia cells in 53 of 78 (68%) investigated patients. Signaling via RANKL into the leukemia cells stimulated their metabolic activity and induced the release of cytokines involved in AML pathophysiology. In addition, the immunomodulatory factors released by AML cells upon RANKL signaling impaired the anti-leukemia reactivity of NK cells and induced RANK expression, and NK cells of AML patients displayed significantly upregulated RANK expression compared with healthy controls. Treatment of AML cells with the clinically available RANKL Ab Denosumab resulted in enhanced NK cell anti-leukemia reactivity. This was due to both blockade of the release of NK-inhibitory factors by AML cells and prevention of RANK signaling into NK cells. The latter was found to directly impair NK anti-leukemia reactivity with a more pronounced effect on IFN-γ production compared with cytotoxicity. Together, our data unravel a previously unknown function of the RANK-RANKL molecule system in AML pathophysiology as well as NK cell function and suggest that neutralization of RANKL with therapeutic Abs may serve to reinforce NK cell reactivity in leukemia patients.
Resumo:
PURPOSE OF REVIEW: The review aims at comprehensively discussing our current knowledge on bone metastases incidence in non-small cell lung cancer (NSCLC), their related complications as well as clinical impact in patients suffering from advanced disease. RECENT FINDINGS: After evoking the use of zoledronic acid as the established standard of care until recently, the new class of drugs available to prevent skeletal related events and targeting receptor activator of nuclear factor-kappa B (RANK) will be emphasized, reporting on denosumab clinical trials, a RANK-ligand (RANKL) targeting monoclonal antibody. Biological hypothesis regarding their mechanisms of action as well a potential direct impact on tumor cells are described according to the most recent laboratory as well as hypothesis-generating clinical data. SUMMARY: Targeting the RANK pathway is an efficient way to prevent complications of bone metastases in NSCLC. Interesting additional direct effects on tumor biology and evolution are being analyzed and prospectively assessed in clinical trials.
Resumo:
Peroxisome proliferator-activated receptor alpha (PPARalpha)is a nuclear receptor for various fatty acids, eicosanoids, and hypolipidemic drugs. In the presence of ligand, this transcription factor increases expression of target genes that are primarily associated with lipid homeostasis. We have previously reported PPARalpha as a nuclear receptor of the inflammatory mediator leukotriene B(4) (LTB(4)) and demonstrated an anti-inflammatory function for PPARalpha in vivo (Devchand, P. R., Keller, H., Peters, J. M., Vazquez, M., Gonzalez, F. J., and Wahli, W. (1996) Nature 384, 39-43). LTB(4) also has a cell surface receptor (BLTR) that mediates proinflammatory events, such as chemotaxis and chemokinesis (Yokomizo, T., Izumi, T., Chang, K., Takuwa, Y., and Shimizu, T. (1997) Nature 387, 620-624). In this study, we report on chemical probes that differentially modulate activity of these two LTB(4) receptors. The compounds selected were originally characterized as synthetic BLTR effectors, both agonists and antagonists. Here, we evaluate the compounds as effectors of the three PPAR isotypes (alpha, beta, and gamma) by transient transfection assays and also determine whether the compounds are ligands for these nuclear receptors by coactivator-dependent receptor ligand interaction assay, a semifunctional in vitro assay. Because the compounds are PPARalpha selective, we further analyze their potency in a biological assay for the PPARalpha-mediated activity of lipid accumulation. These chemical probes will prove invaluable in dissecting processes that involve nuclear and cell surface LTB(4) receptors and also aid in drug discovery programs.
Resumo:
Virgin T cells being primed to Th2-inducing or Th1-inducing Ags, respectively, start to synthesize IL-4 or IFN-gamma as they begin to proliferate. Parallel respective induction of B cells to produce gamma1 or gamma2a switch transcripts provides additional evidence of early divergent Th activity. This report concerns the roles of IL-4, IL-13, and B cells in these early events in vivo. Th2 responses were induced in lymph nodes against hapten-protein given s.c. with killed Bordetella pertussis adjuvant. In T cell proliferation in wild-type mice, IL-4 message up-regulation and gamma1 and epsilon switch transcript production were underway 48-72 h after immunization. The absence of IL-4, IL-13, or B cells did not alter the early T cell proliferative response. The gamma1 and epsilon switch transcript production was still induced in the absence of IL-4, IL-13, or both, but at a reduced level, while the dominance of switching to IgG1 in the extrafollicular hapten-specific plasma cell response was retained. The up-regulation of IL-4 message was not reduced or delayed in the absence of B cells and was only marginally reduced by the absence of IL-13. It is concluded that signals delivered by dendritic cells, which are not dependent on the presence of IL-4, IL-13, or B cells, can prime virgin T cells and induce the early Th2 activities studied. These early events that direct virgin T cells toward Th2 differentiation contrast with the critical later role of Th2 cytokines in selectively expanding Th2 clones and driving further IL-4 synthesis.
Resumo:
Background: The poxvirus vector Modified Vaccinia Virus Ankara (MVA) expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (MVA-B) is currently used as a HIV/AIDS vaccine candidate. A general strategy to try to improve the immunogenicity of poxvirus HIV-1 vaccine candidates is the deletion of known or suggested immunomodulatory vaccinia virus (VACV) genes.Methods: We have generated and characterized the innate immune sensing and the immunogenicity profile of a new HIV-1 vaccine candidate, which contains a deletion in a VACV gene.Results: We show that this VACV protein is expressed early during virus infection and localizes to the cytoplasm of infected cells. Deletion of this VACV gene from the MVA-B had no effect on virus growth kinetics; therefore this VACV protein is not essential for virus replication. The innate immune signals elicited by the MVA-B deletion mutant in human macrophages and monocyte-derived dendritic cells were characterized. In a DNA prime/MVA boost immunization protocol in mice, flow cytometry analysis revealed that the MVA-B deletion mutant enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4 + and CD8 + T-cell memory immune responses, with most of the HIV-1 responses mediated by the CD8 + T-cell compartment with an effector phenotype. Significantly, while MVA-B induced preferentially Env- and Gag-specific CD8 + T-cell responses, the MVA-B deletion mutant induced more GPN-specific CD8 + T-cell responses. Furthermore, the MVA-B deletion mutant enhanced the levels of antibodies against Env in comparison with MVA-B.Conclusion: These findings revealed that this new VACV protein can be considered as an immunomodulator and that deleting this gene in MVA-B confers an immunological benefit by inducing innate immune responses and increasing the magnitude and quality of the T-cell memory immune responses to HIV-1 antigens. Our observations are relevant for the improvement of MVA vectors as HIV-1 vaccines.
Resumo:
Mammary gland development commences during embryogenesis with the establishment of a species typical number of mammary primordia on each flank of the embryo. It is thought that mammary cell fate can only be induced along the mammary line, a narrow region of the ventro-lateral skin running from the axilla to the groin. Ectodysplasin (Eda) is a tumor necrosis factor family ligand that regulates morphogenesis of several ectodermal appendages. We have previously shown that transgenic overexpression of Eda (K14-Eda mice) induces formation of supernumerary mammary placodes along the mammary line. Here, we investigate in more detail the role of Eda and its downstream mediator transcription factor NF-κB in mammary cell fate specification. We report that K14-Eda mice harbor accessory mammary glands also in the neck region indicating wider epidermal cell plasticity that previously appreciated. We show that even though NF-κB is not required for formation of endogenous mammary placodes, it is indispensable for the ability of Eda to induce supernumerary placodes. A genome-wide profiling of Eda-induced genes in mammary buds identified several Wnt pathway components as potential transcriptional targets of Eda. Using an ex vivo culture system, we show that suppression of canonical Wnt signalling leads to a dose-dependent inhibition of supernumerary placodes in K14-Eda tissue explants.
Resumo:
NOD-like receptors (NLR) are a family of cytosolic pattern recognition receptors that include many key drivers of innate immune responses. NLRP12 is an emerging member of the NLR family that is closely related to the well-known inflammasome scaffold, NLRP3. Since its discovery, various functions have been proposed for NLRP12, including the positive regulation of dendritic cell (DC) and neutrophil migration and the inhibition of NF-κB and ERK signalling in DC and macrophages. We show here that NLRP12 is poorly expressed in murine macrophages and DC, but is strongly expressed in neutrophils. Using myeloid cells from WT and Nlrp12(-/)(-) mice, we show that, contrary to previous reports, NLRP12 does not suppress LPS- or infection-induced NF-κB or ERK activation in myeloid cells, and is not required for DC migration in vitro. Surprisingly, we found that Nlrp12 deficiency caused increased rather than decreased neutrophil migration towards the chemokine CXCL1 and the neutrophil parasite Leishmania major, revealing NLRP12 as a negative regulator of directed neutrophil migration under these conditions.