265 resultados para ACID-LABILE SUBUNIT


Relevância:

20.00% 20.00%

Publicador:

Resumo:

D-lactic acid in urine originates mainly from bacterial production in the intestinal tract. Increased D-lactate excretion as observed in patients affected by short bowel syndrome or necrotizing enterocolitis reflects D-lactic overproduction. Therefore, there is a need for a reliable and sensitive method able to detect D-lactic acid even at subclinical elevation levels. A new and highly sensitive method for the simultaneous determination of L- and D-lactic acid by a two-step procedure has been developed. This method is based on the concentration of lactic acid enantiomers from urine by supported liquid extraction followed by high-performance liquid chromatography-tandem mass spectrometry. The separation was achieved by the use of an Astec Chirobiotic? R chiral column under isocratic conditions. The calibration curves were linear over the ranges of 2-400 and 0.5-100 µmol/L respectively for L- and D-lactic acid. The limit of detection of D-lactic acid was 0.125 µmol/L and its limit of quantification was 0.5 µmol/L. The overall accuracy and precision were well within 10% of the nominal values. The developed method is suitable for production of reference values in children and could be applied for accurate routine analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regulator of G-protein signalling (RGS) proteins negatively regulate heterotrimeric G-protein signalling through their conserved RGS domains. RGS domains act as GTPase-activating proteins, accelerating the GTP hydrolysis rate of the activated form of Gα-subunits. Although omnipresent in eukaryotes, RGS proteins have not been adequately analysed in non-mammalian organisms. The Drosophila melanogaster Gαo-subunit and the RGS domain of its interacting partner CG5036 have been overproduced and purified; the crystallization of the complex of the two proteins using PEG 4000 as a crystallizing agent and preliminary X-ray crystallographic analysis are reported. Diffraction data were collected to 2.0 Å resolution using a synchrotron-radiation source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, there is an increased interest in γ-hydroxybutyric acid (GHB) and its effects onsleep. This compound, sometimes referred to as 'rape drug', was recently approved as atreatment for the sleep disorder narcolepsy. Although several studies suggest that GHBinduces slow-wave sleep duration and improves sleep quality by increasing EEG slow-waveactivity, others question its ability to induce physiological sleep. GHB's mechanism of actionis still unclear, although in vivo and in vitro it seems to act at high doses as a low-affinityagonist of GABAB receptors. Furthermore, the role GABAB receptors play in sleep and theelectroencephalogram (EEG) is largely unknown.The aim of this project was therefore to investigate the effects of GHB on sleep and EEG, theinvolvement of GABAB receptors in mediating these effects, as well as the intrinsic role ofeach GABAB receptor subunit in the regulation of sleep. Thus, we administered GHB andbaclofen (BAC, a high-affinity agonist at GABAB receptor) to mice lacking the different GABABreceptor subunits and to healthy human volunteers.Our results, both in mice and humans, showed that GHB produced slow waves exclusivelythrough the stimulation of GABAB receptors, but did not induce physiological sleepnecessary to reduce sleep need and to increase cognitive performance. Unlike GHB, BACaffected the homeostatic regulation of sleep (sleep need) and induced a delayedhypersomnia. Finally, GABAB receptor and its subunits seem to play an important role insleep and in particular its circadian distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agricultural workers are exposed to folpet, but biomonitoring data are limited. Phthalimide (PI), phthalamic acid (PAA), and phthalic acid (PA) are the ring metabolites of this fungicide according to animal studies, but they have not yet been measured in human urine as metabolites of folpet, only PA as a metabolite of phthalates. The objective of this study was thus to develop a reliable gas chromatography-tandem mass spectrometry (GC-MS) method to quantify the sum of PI, PAA, and PA ring-metabolites of folpet in human urine. Briefly, the method consisted of adding p-methylhippuric acid as an internal standard, performing an acid hydrolysis at 100 °C to convert ring-metabolites into PA, purifying samples by ethyl acetate extraction, and derivatizing with N,O-bis(trimethylsilyl)trifluoro acetamide prior to GC-MS analysis. The method had a detection limit of 60.2 nmol/L (10 ng/mL); it was found to be accurate (mean recovery, 97%), precise (inter- and intra-day percentage relative standard deviations <13%), and with a good linearity (R (2) > 0.98). Validation was conducted using unexposed peoples urine spiked at concentrations ranging from 4.0 to 16.1 μmol/L, along with urine samples of volunteers dosed with folpet, and of exposed workers. The method proved to be (1) suitable and accurate to determine the kinetic profile of PA equivalents in the urine of volunteers orally and dermally administered folpet and (2) relevant for the biomonitoring of exposure in workers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tyrosine kinase receptors lead to rapid activation of phosphatidylinositol 3-kinase (PI3 kinase) and the subsequent formation of phosphatidylinositides (PtdIns) 3,4-P2 and PtdIns 3,4, 5-P3, which are thought to be involved in signaling for glucose transporter GLUT4 translocation, cytoskeletal rearrangement, and DNA synthesis. However, the specific role of each of these PtdIns in insulin and growth factor signaling is still mainly unknown. Therefore, we assessed, in the current study, the effect of SH2-containing inositol phosphatase (SHIP) expression on these biological effects. SHIP is a 5' phosphatase that decreases the intracellular levels of PtdIns 3,4,5-P3. Expression of SHIP after nuclear microinjection in 3T3-L1 adipocytes inhibited insulin-induced GLUT4 translocation by 100 +/- 21% (mean +/- the standard error) at submaximal (3 ng/ml) and 64 +/- 5% at maximal (10 ng/ml) insulin concentrations (P < 0.05 and P < 0.001, respectively). A catalytically inactive mutant of SHIP had no effect on insulin-induced GLUT4 translocation. Furthermore, SHIP also abolished GLUT4 translocation induced by a membrane-targeted catalytic subunit of PI3 kinase. In addition, insulin-, insulin-like growth factor I (IGF-I)-, and platelet-derived growth factor-induced cytoskeletal rearrangement, i.e., membrane ruffling, was significantly inhibited (78 +/- 10, 64 +/- 3, and 62 +/- 5%, respectively; P < 0.05 for all) in 3T3-L1 adipocytes. In a rat fibroblast cell line overexpressing the human insulin receptor (HIRc-B), SHIP inhibited membrane ruffling induced by insulin and IGF-I by 76 +/- 3% (P < 0.001) and 68 +/- 5% (P < 0.005), respectively. However, growth factor-induced stress fiber breakdown was not affected by SHIP expression. Finally, SHIP decreased significantly growth factor-induced mitogen-activated protein kinase activation and DNA synthesis. Expression of the catalytically inactive mutant had no effect on these cellular responses. In summary, our results show that expression of SHIP inhibits insulin-induced GLUT4 translocation, growth factor-induced membrane ruffling, and DNA synthesis, indicating that PtdIns 3,4,5-P3 is the key phospholipid product mediating these biological actions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primary roots of intact maize seedlings (cv. LG11) were pretreated when kept vertically (1 or 2 in the dark) with a droplet of buffer solution containing ABA (at different concentrations) applied to the root tip. Then, apical root segments were prepared and placed horizontally in both light and darkness. The downward curvature was measured. In the light, curvature was greater than in darkness and ABA (5×10−5 mol·dm−3) significantly enhanced the curvature in both darkness and light. The amplitude of the increase in the gravireaction was found to be dependent on the ABA concentration and the duration of the pretreatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epithelial sodium channels (ENaC) are members of the degenerin/ENaC superfamily of non-voltage-gated, highly amiloride-sensitive cation channels that are composed of three subunits (alpha-, beta-, and gamma-ENaC). Since complete gene inactivation of the beta- and gamma-ENaC subunit genes (Scnn1b and Scnn1g) leads to early postnatal death, we generated conditional alleles and obtained mice harboring floxed and null alleles for both gene loci. Using quantitative RT-PCR analysis, we showed that the introduction of the loxP sites did not interfere with the mRNA transcript expression level of the Scnn1b and Scnn1g gene locus, respectively. Upon a regular and salt-deficient diet, both beta- and gamma-ENaC floxed mice showed no difference in their mRNA transcript expression levels, plasma electrolytes, and aldosterone concentrations as well as weight changes compared with control animals. These mice can now be utilized to dissect the role of ENaC function in classical and nonclassic target organs/tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The epithelial Na(+) channel (ENaC) and the acid-sensing ion channels (ASICs) form subfamilies within the ENaC/degenerin family of Na(+) channels. ENaC mediates transepithelial Na(+) transport, thereby contributing to Na(+) homeostasis and the maintenance of blood pressure and the airway surface liquid level. ASICs are H(+)-activated channels found in central and peripheral neurons, where their activation induces neuronal depolarization. ASICs are involved in pain sensation, the expression of fear, and neurodegeneration after ischemia, making them potentially interesting drug targets. This review summarizes the biophysical properties, cellular functions, and physiologic and pathologic roles of the ASIC and ENaC subfamilies. The analysis of the homologies between ENaC and ASICs and the relation between functional and structural information shows many parallels between these channels, suggesting that some mechanisms that control channel activity are shared between ASICs and ENaC. The available crystal structures and the discovery of animal toxins acting on ASICs provide a unique opportunity to address the molecular mechanisms of ENaC and ASIC function to identify novel strategies for the modulation of these channels by pharmacologic ligands.