266 resultados para mass imbalance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weight gain is a major health problem among psychiatric populations. It implicates several receptors and hormones involved in energy balance and metabolism. Phosphoenolpyruvate carboxykinase 1 is a rate-controlling enzyme involved in gluconeogenesis, glyceroneogenesis and cataplerosis and has been related to obesity and diabetes phenotypes in animals and humans. The aim of this study was to investigate the association of phosphoenolpyruvate carboxykinase 1 polymorphisms with metabolic traits in psychiatric patients treated with psychotropic drugs inducing weight gain and in general population samples. One polymorphism (rs11552145G > A) significantly associated with body mass index in the psychiatric discovery sample (n = 478) was replicated in 2 other psychiatric samples (n1 = 168, n2 = 188), with AA-genotype carriers having lower body mass index as compared to G-allele carriers. Stronger associations were found among women younger than 45 years carrying AA-genotype as compared to G-allele carriers (-2.25 kg/m, n = 151, P = 0.009) and in the discovery sample (-2.20 kg/m, n = 423, P = 0.0004). In the discovery sample for which metabolic parameters were available, AA-genotype showed lower waist circumference (-6.86 cm, P = 0.008) and triglycerides levels (-5.58 mg/100 mL, P < 0.002) when compared to G-allele carriers. Finally, waist-to-hip ratio was associated with rs6070157 (proxy of rs11552145, r = 0.99) in a population-based sample (N = 123,865, P = 0.022). Our results suggest an association of rs11552145G > A polymorphism with metabolic-related traits, especially in psychiatric populations and in women younger than 45 years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human activities can have a suite of positive and negative effects on animals and thus can affect various life history parameters. Human presence and agricultural practice can be perceived as stressors to which animals react with the secretion of glucocorticoids. The acute short-term secretion of glucocorticoids is considered beneficial and helps an animal to redirect energy and behaviour to cope with a critical situation. However, a long-term increase of glucocorticoids can impair e.g. growth and immune functions. We investigated how nestling barn owls (Tyto alba) are affected by the surrounding landscape and by human activities around their nest sites. We studied these effects on two response levels: (a) the physiological level of the hypothalamus-pituitary-adrenal axis, represented by baseline concentrations of corticosterone and the concentration attained by a standardized stressor; (b) fitness parameters: growth of the nestlings and breeding performance. Nestlings growing up in intensively cultivated areas showed increased baseline corticosterone levels late in the season and had an increased corticosterone release after a stressful event, while their body mass was decreased. Nestlings experiencing frequent anthropogenic disturbance had elevated baseline corticosterone levels, an increased corticosterone stress response and a lower body mass. Finally, breeding performance was better in structurally more diverse landscapes. In conclusion, anthropogenic disturbance affects offspring quality rather than quantity, whereas agricultural practices affect both life history traits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A headspace-gas chromatography-tandem mass spectrometry (HS-GC-MS/MS) method for the trace measurement of perfluorocarbon compounds (PFCs) in blood was developed. Due to oxygen carrying capabilities of PFCs, application to doping and sports misuse is speculated. This study was therefore extended to perform validation methods for F-tert-butylcyclohexane (Oxycyte(®)), perfluoro(methyldecalin) (PFMD) and perfluorodecalin (PFD). The limit of detection of these compounds was established and found to be 1.2µg/mL blood for F-tert-butylcyclohexane, 4.9µg/mL blood for PFMD and 9.6µg/mL blood for PFD. The limit of quantification was assumed to be 12µg/mL blood (F-tert-butylcyclohexane), 48µg/mL blood (PFMD) and 96µg/mL blood (PFD). HS-GC-MS/MS technique allows detection from 1000 to 10,000 times lower than the estimated required dose to ensure a biological effect for the investigated PFCs. Thus, this technique could be used to identify a PFC misuse several hours, maybe days, after the injection or the sporting event. Clinical trials with those compounds are still required to evaluate the validation parameters with the calculated estimations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obesity development during psychotropic treatments represents a major health issue in psychiatry. Melanin-concentrating hormone receptor 2 (MCHR2) is a central receptor involved in energy homeostasis. MCHR2 shares its promoter region with MCHR2-AS1, a long antisense non-coding RNA. The aim of this study was to determine whether tagging single nucleotide polymorphisms (tSNPs) of MCHR2 and MCHR2-AS1 are associated with the body mass index (BMI) in the psychiatric and in the general population. The influence of MCHR2 and MCHR2-AS1 tSNPs on BMI was firstly investigated in a discovery psychiatric sample (n1 = 474). Positive results were tested for replication in two other psychiatric samples (n2 = 164, n3 = 178) and in two population-based samples (CoLaus, n4 = 5409; GIANT, n5 = 113809). In the discovery sample, TT carriers of rs7754794C>T had 1.08 kg/m2 (p = 0.04) lower BMI as compared to C-allele carriers. This observation was replicated in an independent psychiatric sample (-2.18 kg/m2; p = 0.009). The association of rs7754794C>T and BMI seemed stronger in subjects younger than 45 years (median of age). In the population-based sample, a moderate association was observed (-0.17 kg/m2; p = 0.02) among younger individuals (<45y). Interestingly, this association was totally driven by patients meeting lifetime criteria for atypical depression, i.e. major depressive episodes characterized by symptoms such as an increased appetite. Indeed, patients with atypical depression carrying rs7754794-TT had 1.17 kg/m2 (p = 0.04) lower BMI values as compared to C-allele carriers, the effect being stronger in younger individuals (-2.50 kg/m2; p = 0.03; interaction between rs7754794 and age: p-value = 0.08). This study provides new insights on the possible influence of MCHR2 and/or MCHR2-AS1 on obesity in psychiatric patients and on the pathophysiology of atypical depression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To-date, there has been no effective chiral capillary electrophoresis-mass spectrometry (CE-MS) method reported for the simultaneous enantioseparation of the antidepressant drug, venlafaxine (VX) and its structurally-similar major metabolite, O-desmethylvenlafaxine (O-DVX). This is mainly due to the difficulty of identifying MS compatible chiral selector, which could provide both high enantioselectivity and sensitive MS detection. In this work, poly-sodium N-undecenoyl-L,L-leucylalaninate (poly-L,L-SULA) was employed as a chiral selector after screening several dipeptide polymeric chiral surfactants. Baseline separation of both O-DVX and VX enantiomers was achieved in 15min after optimizing the buffer pH, poly-L,L-SULA concentration, nebulizer pressure and separation voltage. Calibration curves in spiked plasma (recoveries higher than 80%) were linear over the concentration range 150-5000ng/mL for both VX and O-DVX. The limit of detection (LOD) was found to be as low as 30ng/mL and 21ng/mL for O-DVX and VX, respectively. This method was successfully applied to measure the plasma concentrations of human volunteers receiving VX or O-DVX orally when co-administered without and with indinivar therapy. The results suggest that micellar electrokinetic chromatography electrospray ionization-tandem mass spectrometry (MEKC-ESI-MS/MS) is an effective low cost alternative technique for the pharmacokinetics and pharmacodynamics studies of both O-DVX and VX enantiomers. The technique has potential to identify drug-drug interaction involving VX and O-DVX enantiomers while administering indinivar therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Recent methodological advances allow better examination of speciation and extinction processes and patterns. A major open question is the origin of large discrepancies in species number between groups of the same age. Existing frameworks to model this diversity either focus on changes between lineages, neglecting global effects such as mass extinctions, or focus on changes over time which would affect all lineages. Yet it seems probable that both lineages differences and mass extinctions affect the same groups. RESULTS: Here we used simulations to test the performance of two widely used methods under complex scenarios of diversification. We report good performances, although with a tendency to over-predict events with increasing complexity of the scenario. CONCLUSION: Overall, we find that lineage shifts are better detected than mass extinctions. This work has significance to assess the methods currently used to estimate changes in diversification using phylogenetic trees. Our results also point toward the need to develop new models of diversification to expand our capabilities to analyse realistic and complex evolutionary scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obesity is associated with chronic food intake disorders and binge eating. Food intake relies on the interaction between homeostatic regulation and hedonic signals among which, olfaction is a major sensory determinant. However, its potential modulation at the peripheral level by a chronic energy imbalance associated to obese status remains a matter of debate. We further investigated the olfactory function in a rodent model relevant to the situation encountered in obese humans, where genetic susceptibility is juxtaposed on chronic eating disorders. Using several olfactory-driven tests, we compared the behaviors of obesity-prone Sprague-Dawley rats (OP) fed with a high-fat/high-sugar diet with those of obese-resistant ones fed with normal chow. In OP rats, we reported 1) decreased odor threshold, but 2) poor olfactory performances, associated with learning/memory deficits, 3) decreased influence of fasting, and 4) impaired insulin control on food seeking behavior. Associated with these behavioral modifications, we found a modulation of metabolism-related factors implicated in 1) electrical olfactory signal regulation (insulin receptor), 2) cellular dynamics (glucorticoids receptors, pro- and antiapoptotic factors), and 3) homeostasis of the olfactory mucosa and bulb (monocarboxylate and glucose transporters). Such impairments might participate to the perturbed daily food intake pattern that we observed in obese animals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insulin-like growth factor 2 (IGF2), produced and secreted by adult β-cells, functions as an autocrine activator of the β-cell insulin-like growth factor 1 receptor signaling pathway. Whether this autocrine activity of IGF2 plays a physiological role in β-cell and whole-body physiology is not known. Here, we studied mice with β-cell-specific inactivation of Igf2 (βIGF2KO mice) and assessed β-cell mass and function in aging, pregnancy, and acute induction of insulin resistance. We showed that glucose-stimulated insulin secretion (GSIS) was markedly reduced in old female βIGF2KO mice; glucose tolerance was, however, normal because of increased insulin sensitivity. While on a high-fat diet, both male and female βIGF2KO mice displayed lower GSIS compared with control mice, but reduced β-cell mass was observed only in female βIGF2KO mice. During pregnancy, there was no increase in β-cell proliferation and mass in βIGF2KO mice. Finally, β-cell mass expansion in response to acute induction of insulin resistance was lower in βIGF2KO mice than in control mice. Thus, the autocrine action of IGF2 regulates adult β-cell mass and function to preserve in vivo GSIS in aging and to adapt β-cell mass in response to metabolic stress, pregnancy hormones, and acute induction of insulin resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review presents the evolution of steroid analytical techniques, including gas chromatography coupled to mass spectrometry (GC-MS), immunoassay (IA) and targeted liquid chromatography coupled to mass spectrometry (LC-MS), and it evaluates the potential of extended steroid profiles by a metabolomics-based approach, namely steroidomics. Steroids regulate essential biological functions including growth and reproduction, and perturbations of the steroid homeostasis can generate serious physiological issues; therefore, specific and sensitive methods have been developed to measure steroid concentrations. GC-MS measuring several steroids simultaneously was considered the first historical standard method for analysis. Steroids were then quantified by immunoassay, allowing a higher throughput; however, major drawbacks included the measurement of a single compound instead of a panel and cross-reactivity reactions. Targeted LC-MS methods with selected reaction monitoring (SRM) were then introduced for quantifying a small steroid subset without the problems of cross-reactivity. The next step was the integration of metabolomic approaches in the context of steroid analyses. As metabolomics tends to identify and quantify all the metabolites (i.e., the metabolome) in a specific system, appropriate strategies were proposed for discovering new biomarkers. Steroidomics, defined as the untargeted analysis of the steroid content in a sample, was implemented in several fields, including doping analysis, clinical studies, in vivo or in vitro toxicology assays, and more. This review discusses the current analytical methods for assessing steroid changes and compares them to steroidomics. Steroids, their pathways, their implications in diseases and the biological matrices in which they are analysed will first be described. Then, the different analytical strategies will be presented with a focus on their ability to obtain relevant information on the steroid pattern. The future technical requirements for improving steroid analysis will also be presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Body mass index (BMI) may cluster in space among adults and be spatially dependent. Whether and how BMI clusters evolve over time in a population is currently unknown. We aimed to determine the spatial dependence of BMI and its 5-year evolution in a Swiss general adult urban population, taking into account the neighbourhood-level and individual-level characteristics. DESIGN: Cohort study. SETTING: Swiss general urban population. PARTICIPANTS: 6481 georeferenced individuals from the CoLaus cohort at baseline (age range 35-74 years, period=2003-2006) and 4460 at follow-up (period=2009-2012). OUTCOME MEASURES: Body weight and height were measured by trained healthcare professionals with participants standing without shoes in light indoor clothing. BMI was calculated as weight (kg) divided by height squared (m(2)). Participants were geocoded using their postal address (geographic coordinates of the place of residence). Getis-Ord Gi statistic was used to measure the spatial dependence of BMI values at baseline and its evolution at follow-up. RESULTS: BMI was not randomly distributed across the city. At baseline and at follow-up, significant clusters of high versus low BMIs were identified and remained stable during the two periods. These clusters were meaningfully attenuated after adjustment for neighbourhood-level income but not individual-level characteristics. Similar results were observed among participants who showed a significant weight gain. CONCLUSIONS: To the best of our knowledge, this is the first study to report longitudinal changes in BMI clusters in adults from a general population. Spatial clusters of high BMI persisted over a 5-year period and were mainly influenced by neighbourhood-level income.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Worldwide, about half the adult population is considered overweight as defined by a body mass index (BMI - calculated by body weight divided by height squared) ratio in excess of 25 kg.m-2. Of these individuals, half are clinically obese (with a BMI in excess of 30) and these numbers are still increasing, notably in developing countries such as those of the Middle East region. Obesity is a disorder characterised by increased mass of adipose tissue (excessive fat accumulation) that is the result of a systemic imbalance between food intake and energy expenditure. Although factors such as family history, sedentary lifestyle, urbanisation, income and family diet patterns determine obesity prevalence, the main underlying causes are poor knowledge about food choice and lack of physical activity3. Current obesity treatments include dietary restriction, pharmacological interventions and ultimately, bariatric surgery. The beneficial effects of physical activity on weight loss through increased energy expenditure and appetite modulation are also firmly established. Another viable option to induce a negative energy balance, is to incorporate hypoxia per se or combine it with exercise in an individual's daily schedule. This article will present recent evidence suggesting that combining hypoxic exposure and exercise training might provide a cost-effective strategy for reducing body weight and improving cardio-metabolic health in obese individuals. The efficacy of this approach is further reinforced by epidemiological studies using large-scale databases, which evidence a negative relationship between altitude of habitation and obesity. In the United States, for instance, obesity prevalence is inversely associated with altitude of residence and urbanisation, after adjusting for temperature, diet, physical activity, smoking and demographic factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insulin secretion from pancreatic β cells plays a central role in the control of blood glucose levels. The amount of insulin released by β cells is precisely adjusted to match organism requirements. A number of conditions that arise during life, including pregnancy and obesity, can result in a decreased sensitivity of insulin target tissues and a consequent rise in insulin needs. To preserve glucose homoeostasis, the augmented insulin demand requires a compensatory expansion of the pancreatic β cell mass and an increase in its secretory activity. This compensatory process is accompanied by modifications in β cell gene expression, although the molecular mechanisms underlying the phenomenon are still poorly understood. Emerging evidence indicates that at least part of these compensatory events may be orchestrated by changes in the level of a novel class of gene regulators, the microRNAs. Indeed, several of these small, non-coding RNAs have either positive or negative impacts on β cell proliferation and survival. The studies reviewed here suggest that the balance between the actions of these two groups of microRNAs, which have opposing functional effects, can determine whether β cells expand sufficiently to maintain blood glucose levels in the normal range or fail to meet insulin demand and thus lead, as a consequence, towards diabetes manifestation. A better understanding of the mechanisms governing changes in the microRNA profile will open the way for the development of new strategies to prevent and/or treat both type 2 and gestational diabetes.