403 resultados para liver membrane
Resumo:
OBJECTIVE To identify metabolic pathways that may underlie susceptibility or resistance to high-fat diet-induced hepatic steatosis. RESEARCH DESIGN AND METHODS We performed comparative transcriptomic analysis of the livers of A/J and C57Bl/6 mice, which are, respectively, resistant and susceptible to high-fat diet-induced hepatosteatosis and obesity. Mice from both strains were fed a normal chow or a high-fat diet for 2, 10, and 30 days, and transcriptomic data were analyzed by time-dependent gene set enrichment analysis. Biochemical analysis of mitochondrial respiration was performed to confirm the transcriptomic analysis. RESULTS Time-dependent gene set enrichment analysis revealed a rapid, transient, and coordinate upregulation of 13 oxidative phosphorylation genes after initiation of high-fat diet feeding in the A/J, but not in the C57Bl/6, mouse livers. Biochemical analysis using liver mitochondria from both strains of mice confirmed a rapid increase by high-fat diet feeding of the respiration rate in A/J but not C57Bl/6 mice. Importantly, ATP production was the same in both types of mitochondria, indicating increased uncoupling of the A/J mitochondria. CONCLUSIONS Together with previous data showing increased expression of mitochondrial β-oxidation genes in C57Bl/6 but not A/J mouse livers, our present study suggests that an important aspect of the adaptation of livers to high-fat diet feeding is to increase the activity of the oxidative phosphorylation chain and its uncoupling to dissipate the excess of incoming metabolic energy and to reduce the production of reactive oxygen species. The flexibility in oxidative phosphorylation activity may thus participate in the protection of A/J mouse livers against the initial damages induced by high-fat diet feeding that may lead to hepatosteatosis.
Resumo:
RESUME La première étape primordiale au cycle de vie du Plasmodium dans un hôte mammifère est l'invasion des hepatocytes par des sporozoites. L'infection finale des hepatocytes est précédée de la traversée de plusieurs cellules hôtes, rompant les membranes plasmiques et ayant comme résultat la sécrétion des facteurs cytotoliques dans le micro-environnement. Ce matériel endogène libéré est fortement stimulant/immunogène et peut servir de signal de danger initiant des réponses distinctes dans diverses cellules. De nos jours, le caractère essentiel et salutaire de la migration des sporozoites comme étape d'infection du Plasmodium est vivement controversée. Ainsi, notre étude a visé à caractériser l'effet de l'interaction du parasite avec ses cellules hôtes d'un point de vue immunologique. En particulier, nous avons voulu évaluer l'effet de la perte de matériel cellulaire pendant l'infection de Plasmodium sur les hepatocytes primaires de souris et sur des cultures cellulaires HepG2. Nous avons observé que les facteurs cytotoxiques dérivés des cellules endommagés activent NF-κB - un important régulateur de réponse inflammatoires -dans des cellules voisines des cellules endommagés, qui sont des cellules hôtes potentielles pour l'infection finale du parasite. Cette activation de NF-κB s'est produite peu de temps après l'infection et a mené in vitro et in vivo à une réduction d'infection de façon dépendante du temps, un effet qui a pu être compensé par l'addition de BAY11-7082, un inhibiteur spécifique de NF-κB. De plus, aucune activation de NF-κB avec des parasites SPECT-/-, incapables de traverser les hepatocytes, n'a été observée. Nous avons montré parla suite que l'activation de NF-κB induit l'expression de l'enzyme iNOS dans les hepatocytes, qui est responsable d'une diminution des hepatocytes infectés. En outre, les hepatocytes primaires des souris MyD88-/- n'ont montré ni activation de NF-κB, ni expression d'iNOS lors de l'infection, ce qui suggère la participation des membres de famille du Toll/IL-1 récepteur dans la reconnaissance des facteurs cytosoxiques. En effet, le manque de MyD88 a augmenté significativement l'infection in vitro et in vivo. D'autre part, un rôle bénéfique pour l'activation de NF-κB a été évalué. Les cellules infectées étaient plus résistantes contre l'apoptose induite par Fas (CD95/Apo-1) que les cellules non infectées ou les cellules infectées dans lesquelles NF-κB a été bloqué par BAY11-7082 in vitro. Paradoxalement, l'expression d'iNOS contribue à la protection des cellules infectées contre l'apoptose pax Fas, puisque le traitement avec l'inhibiteur spécifique SMT (S-methylisothiourea) a rendu les cellules infectées plus susceptibles à l'apoptose. Un effet bénéfique additionnel pour le parasite est que la plupart des cellules hôtes traversées présentent des peptides du parasite aux cellules T cytotoxiques spécifiques et peuvent donc réorienter la réaction immune spécifique sur les cellules non infectées. Nous montrons que les cellules hôtes endommagés par la migration du parasite induit l'inflammation, qui limite l'ampleur de l'infection. D'autre part, nos données soutiennent que la survie du parasite Plasmodium dans le foie est assurée par une augmentation de la résistance des hepatocytes contre l'apoptose. SUMMARY The first obligatory step of the Plasmodium life cycle in the mammalian host is the invasion of hepatocytes by sporozoites. Final hepatocyte infection involves the penetration of several host cells, whose plasma membranes are ruptured in the process, resulting in the release of cytosolic factors into the microenvironment. This released endogenous material is highly stimulatory / immunogenic and can serve as a danger signal initiating distinct responses in various cells. To date, it is highly controversial whether sporozoite migration through hepatocytes is an essential and beneficial step for Plasmodium infection. Thus, our study aimed at characterizing the effect of the interaction of the parasite with its host cells from an immunological point of view In particular, we wanted to evaluate the effect of cell material leakage during Plasmodium infection on cultured mouse primary hepatocytes and HepG2 cells. We observed that wounded cell-derived cytosolic factors activate NF-κB - a main regulator of host inflammatory responses - in cells bordering wounded cells, which are potential host cells for final parasite infection. This activation of NF-κB occurred shortly after infection and led to a reduction of infection load in a time dependent manner in vitro and in viva, an effect that could be reverted by addition of the specific NF-κB inhibitor BAY11-7082. In addition, no NF-κB activation was observed when SPECT-/- parasites, which are devoid of hepatocyte traversing properties, were used. We provide further evidence that NF-κB activation causes the induction of inducible nitric oxide synthase (iNOS) expression in hepatocytes, and this is, in turn, responsible for a decrease in Plasmodium-infected hepatocytes. Furthermore, primary hepatocytes from MyD88-/- mice showed no NF-κB activation and iNOS expression upon infection, suggesting a role of the Toll/IL-1 receptor family members in sensing cytosolic factors. Indeed, lack of MyD88 significantly increased infection in vitro and in vivo. In a further complementary series of experiments, we assessed a possible beneficial role for the activation of NF-κB. Infected cells were more resistant to Fas (CD95/Apo-1)-mediated apoptosis than uninfected cells or infected cells in which NF-κB was blocked by BAYl1-7082 in vitro. Paradoxically, iNOS expression contributes to the protection of infected cells from Fas-induced apoptosis, since treatment with the specific iNOS inhibitor SMT (S-Methylisothiourea Sulfate) rendered the infected cells more susceptible to apoptosis. An additional beneficial effect of host cell traversal for the parasite is the fact that mainly traversed cells present parasite-derived peptides to specific cytotoxic T cells and therefore may redirect the specific immune response to uninfected cells. In summary, we have shown that host cells wounded by parasite migration induce inflammation, which limits the extent of parasite infection. In addition, our data support the notion that survival of Plasmodium parasites in the liver is mediated by increasing the resistance of hepatocytes to Fas-induced apoptosis.
Resumo:
Peroxisome proliferator-activated receptor alpha (PPARalpha) is an important transcription factor in liver that can be activated physiologically by fasting or pharmacologically by using high-affinity synthetic agonists. Here we initially set out to elucidate the similarities in gene induction between Wy14643 and fasting. Numerous genes were commonly regulated in liver between the two treatments, including many classical PPARalpha target genes, such as Aldh3a2 and Cpt2. Remarkably, several genes induced by Wy14643 were upregulated by fasting independently of PPARalpha, including Lpin2 and St3gal5, suggesting involvement of another transcription factor. Using chromatin immunoprecipitation, Lpin2 and St3gal5 were shown to be direct targets of PPARbeta/delta during fasting, whereas Aldh3a2 and Cpt2 were exclusive targets of PPARalpha. Binding of PPARbeta/delta to the Lpin2 and St3gal5 genes followed the plasma free fatty acid (FFA) concentration, consistent with activation of PPARbeta/delta by plasma FFAs. Subsequent experiments using transgenic and knockout mice for Angptl4, a potent stimulant of adipose tissue lipolysis, confirmed the stimulatory effect of plasma FFAs on Lpin2 and St3gal5 expression levels via PPARbeta/delta. In contrast, the data did not support activation of PPARalpha by plasma FFAs. The results identify Lpin2 and St3gal5 as novel PPARbeta/delta target genes and show that upregulation of gene expression by PPARbeta/delta is sensitive to plasma FFA levels. In contrast, this is not the case for PPARalpha, revealing a novel mechanism for functional differentiation between PPARs.
Resumo:
The main clinical features in four patients with IgG1k paraproteinaemia and acquired complement deficiency included xanthomatous skin lesions (in three), panniculitis (in three) and hepatitis (in two). Hypocomplementaemia concerned the early classical pathway components--in particular C1q. Metabolic studies employing 125I-C1q revealed a much faster catabolism of this protein in the four patients than in five normal controls and three patients with cryoglobulinaemia (mean fractional catabolic rates respectively: 23.35%/h; 1.44%/h; 5.84%/h). Various experiments were designed to characterize the mechanism of the hypocomplementaemia: the patients' serum, purified paraprotein, blood cells, bone marrow cells, or xanthomatous skin lesions did not produce significant complement activation or C1q binding. When three of the patients (two with panniculitis and hepatitis) were injected with 123I-C1q, sequential gamma-camera imaging demonstrated rapid accumulation of the radionuclide in the liver, suggesting that complement activation takes place in the liver where it could produce damage.
Resumo:
ABSTRACT. A dual-wavelength digital holographic microscope to measure absolute volume of living cells is proposed. The optical setup allows us to reconstruct two quantitative phase contrast images at two different wavelengths from a single hologram acquisition. When adding the absorbing dye fast green FCF as a dispersive agent to the extracellular medium, cellular thickness can be univocally determined in the full field of view. In addition to the absolute cell volume, the method can be applied to derive important biophysical parameters of living cells including osmotic membrane water permeability coefficient and the integral intracellular refractive index (RI). Further, the RI of transmembrane flux can be determined giving an indication about the nature of transported solutes. The proposed method is applied to cultured human embryonic kidney cells, Chinese hamster ovary cells, human red blood cells, mouse cortical astrocytes, and neurons.
Resumo:
The latent membrane protein 1 (LMP1) encoded by the Epstein-Barr virus functions as a constitutively activated receptor of the tumor necrosis factor receptor family. LMP1 is a short-lived protein that is ubiquitinated and degraded by the proteasome. We have previously shown that LMP1 recruits the adapter protein tumor necrosis factor receptor-associated factor 3 (TRAF3) to lipid rafts. To test if TRAFs are involved in LMP1's ubiquitination, we have mutated the LMP1 CTAR1 site that has been identified as a TRAF binding site. We show that the CTAR1 mutant (CTAR1(-)) is expressed after transfection at a similar level to wild-type LMP1, and behaves as wild-type LMP1 with respect to membrane localization. However, CTAR1(-) does not bind TRAF3. We demonstrate that ubiquitination of CTAR1(-) is significantly reduced when compared to wild-type LMP1. In addition, the expression of wild-type LMP1 induces the ubiquitination, an effect that is significantly reduced when the CTAR1(-) is expressed. Taken together, our results suggest that TRAF proteins are involved in the ubiquitination of LMP1, and that their binding to LMP1 may facilitate their own ubiquitination.
Resumo:
RATIONALE: This study was intended to document the frequency of care complexity in liver transplant candidates, and its association with mood disturbance and poor health-related quality of life (HRQoL). METHODS: Consecutive patients fulfilling inclusion criteria, recruited in three European hospitals, were assessed with INTERMED, a reliable and valid method for the early assessment of bio-psychosocial health risks and needs. Blind to the results, they were also assessed with the Hospital Anxiety and Depression Scale (HADS). HRQoL was documented with the EuroQol and the SF36. Statistical analysis included multivariate and multilevel techniques. RESULTS: Among patients fulfilling inclusion criteria, 60 patients (75.9%) completed the protocol and 38.3% of them were identified as "complex" by INTERMED, but significant between-center differences were found. In support of the working hypothesis, INTERMED scores were significantly associated with all measures of both the SF36 and the EuroQol, and also with the HADS. A one point increase in the INTERMED score results in a reduction in 0.93 points in EuroQol and a 20% increase in HADS score. CONCLUSIONS: INTERMED-measured case complexity is frequent in liver transplant candidates but varies widely between centers. The use of this method captures in one instrument multiple domains of patient status, including mood disturbances and reduced HRQoL.
Resumo:
Plasma liver-enzyme tests are widely used in the clinic for the diagnosis of liver diseases and for monitoring the response to drug treatment. There is considerable evidence that human genetic variation influences plasma levels of liver enzymes. However, such genetic variation has not been systematically assessed. In the present study, we performed a genome-wide association study of plasma liver-enzyme levels in three populations (total n = 7715) with replication in three additional cohorts (total n = 4704). We identified two loci influencing plasma levels of alanine-aminotransferase (ALT) (CPN1-ERLIN1-CHUK on chromosome 10 and PNPLA3-SAMM50 on chromosome 22), one locus influencing gamma-glutamyl transferase (GGT) levels (HNF1A on chromosome 12), and three loci for alkaline phosphatase (ALP) levels (ALPL on chromosome 1, GPLD1 on chromosome 6, and JMJD1C-REEP3 on chromosome 10). In addition, we confirmed the associations between the GGT1 locus and GGT levels and between the ABO locus and ALP levels. None of the ALP-associated SNPs were associated with other liver tests, suggesting intestine and/or bone specificity. The mechanisms underlying the associations may involve cis- or trans-transcriptional effects (some of the identified variants were associated with mRNA transcription in human liver or lymphoblastoid cells), dysfunction of the encoded proteins (caused by missense variations at the functional domains), or other unknown pathways. These findings may help in the interpretation of liver-enzyme tests and provide candidate genes for liver diseases of viral, metabolic, autoimmune, or toxic origin. The specific associations with ALP levels may point to genes for bone or intestinal diseases.
Resumo:
Aim: When planning SIRT using 90Y microspheres, the partition model is used to refine the activity calculated by the body surface area (BSA) method to potentially improve the safety and efficacy of treatment. For this partition model dosimetry, accurate determination of mean tumor-to-normal liver ratio (TNR) is critical since it directly impacts absorbed dose estimates. This work aimed at developing and assessing a reliable methodology for the calculation of 99mTc-MAA SPECT/CT-derived TNR ratios based on phantom studies. Materials and methods: IQ NEMA (6 hot spheres) and Kyoto liver phantoms with different hot/background activity concentration ratios were imaged on a SPECT/CT (GE Infinia Hawkeye 4). For each reconstruction with the IQ phantom, TNR quantification was assessed in terms of relative recovery coefficients (RC) and image noise was evaluated in terms of coefficient of variation (COV) in the filled background. RCs were compared using OSEM with Hann, Butterworth and Gaussian filters, as well as FBP reconstruction algorithms. Regarding OSEM, RCs were assessed by varying different parameters independently, such as the number of iterations (i) and subsets (s) and the cut-off frequency of the filter (fc). The influence of the attenuation and diffusion corrections was also investigated. Furthermore, both 2D-ROIs and 3D-VOIs contouring were compared. For this purpose, dedicated Matlab© routines were developed in-house for automatic 2D-ROI/3D-VOI determination to reduce intra-user and intra-slice variability. Best reconstruction parameters and RCs obtained with the IQ phantom were used to recover corrected TNR in case of the Kyoto phantom for arbitrary hot-lesion size. In addition, we computed TNR volume histograms to better assess uptake heterogeneityResults: The highest RCs were obtained with OSEM (i=2, s=10) coupled with the Butterworth filter (fc=0.8). Indeed, we observed a global 20% RC improvement over other OSEM settings and a 50% increase as compared to the best FBP reconstruction. In any case, both attenuation and diffusion corrections must be applied, thus improving RC while preserving good image noise (COV<10%). Both 2D-ROI and 3D-VOI analysis lead to similar results. Nevertheless, we recommend using 3D-VOI since tumor uptake regions are intrinsically 3D. RC-corrected TNR values lie within 17% around the true value, substantially improving the evaluation of small volume (<15 mL) regions. Conclusions: This study reports the multi-parameter optimization of 99mTc MAA SPECT/CT images reconstruction in planning 90Y dosimetry for SIRT. In phantoms, accurate quantification of TNR was obtained using OSEM coupled with Butterworth and RC correction.
Resumo:
Background: The hepatitis C virus (HCV) NS3-4A protease is not only an essential component of the viral replication complex and a prime target for antiviral intervention but also a key player in the persistence and pathogenesis of HCV. It cleaves and thereby inactivates two crucial adaptor proteins in viral RNA sensing and innate immunity (MAVS and TRIF) as well as a phosphatase involved in growth factor signaling (TC-PTP). The aim of this study was to identify novel cellular substrates of the NS3-4A protease and to investigate their role in the life cycle and pathogenesis of HCV. Methods: Cell lines inducibly expressing the NS3-4A protease were analyzed in basal as well as interferon- α -stimulated states by stable isotopic labeling using amino acids in cell culture (SILAC) coupled with protein separation and mass spectrometry. Candidates fulfilling strin- gent criteria for potential substrates or products of the NS3-4A protease were further investigated in different experimental sys- tems as well as in liver biopsies from patients with chronic hep- atitis C. Results: SILAC coupled with protein separation and mass spectrometry yielded > 5000 proteins of which 21 can- didates were selected for further analyses. These allowed us to identify GPx8, a membrane-associated peroxidase involved in disulfide bond formation in the endoplasmic reticulum, as a novel cellular substrate of the HCV NS3-4A protease. Cleavage occurs at cysteine in position 11, removing the cytosolic tip of GPx8, and was observed in different experimental systems as well as in liver biopsies from patients with chronic hepatitis C. Further functional studies, involving overexpression and RNA silencing, revealed that GPx8 is a proviral factor involved in viral particle production but not in HCV entry or RNA replica- tion. Conclusions: GPx8 is a proviral host factor cleaved by the HCV NS3-4A protease. Studies investigating the consequences of cleavage for GPx8 function are underway. The identification of novel cellular substrates of the HCV NS3-4A protease should yield new insights into the HCV life cycle and the pathogenesis of hepatitis C and may reveal novel angles for therapeutic inter- vention.
Resumo:
PURPOSE: To describe the clinical and histologic features of a particular form of macular epiretinal membrane. METHODS: The charts of all patients operated for macular epiretinal membrane by a single surgeon (E.H.B.) between June 2001 and January 2005 were retrospectively reviewed. Patients with macular epiretinal membrane associated with tearing and folding of the internal limiting membrane (ILM) were identified and the following parameters were recorded when available: age, gender, best-corrected visual acuity before and after vitrectomy; optical coherence tomography; pre-, intra-, and postoperative macular status; intraoperative staining by indocyanine green; histology. RESULTS: Twenty-three of 268 eyes (8.6%) with macular epiretinal membrane were associated with tearing and folding of the ILM, forming a whitish prominent band on the surface of the retina. The mean age of the patients was 68.6 years with a significant female predominance (78.3%). The vitreous was completely detached in 21 eyes. After surgical peeling, the mean visual gain was 3.2 Early Treatment Diabetic Retinopathy Study lines. No recurrence was observed. CONCLUSION: Tearing and folding of the ILM was associated with macular epiretinal membranes in 8.6% of cases. The ILM was probably torn during posterior hyaloid detachment, but the pathogenesis has not been clearly elucidated. The surgeon should begin to peel the macular epiretinal membrane by grasping the folded ILM to ensure complete removal of the ILM together with the epiretinal membrane. The postoperative visual prognosis was good
Resumo:
Liver stiffness values in transient elastography (TE) have to be interpreted with caution. Steatosis, congestion, acute inflammation and extrahepatic cholestasis can indeed influence measurements. Obtained stiffness values in the cirrhotic range can also be present in the absence of fibrosis as in hepatic amyloidosis. Here we report two cases of systemic amyloidosis with hepatic involvement where high stiffness values were measured at TE. In fact, deposits of amyloid may increase the rigidity of the liver parenchyma resulting in higher liver stiffness values. Therefore, results of TE should always be interpreted in their clinical context and if inconsistent, the performance of a liver biopsy might be necessary.