293 resultados para immune decrease
Resumo:
Purpose/Objective: NLRs are intracellular proteins involved in sensing pathogen- and danger-associated molecular patterns, thereby initiating inflammatory responses or cell death. The function of the family member NLRC5 remains a matter of debate, particularly with respect to NF-jB activation, type I IFN, and MHC class I expression. Materials and methods: To study the function of this NLR in vivo, we generated Nlrc5-deficient mice. Results: We found that NLRC5 deletion led to a mild reduction in MHC class I expression on DCs and an intermediate decrease on B cells, while MHC class I levels were dramatically lowered on T, NKT, and NK cells. Nlrc5-/- lymphocytes showed decreased H-2 gene transcript abundance and, accordingly, NLRC5 was sufficient to drive MHC class I expression in a human lymphoid cell line. Moreover, endogenous NLRC5 localized to the nucleus and occupied the proximal promoter region of H-2 genes. Notably, cytotoxic T cell-mediated elimination of Nlrc5-/- lymphocytes was markedly reduced. In addition, we observed low NLRC5 expression in several murine and human lymphoid-derived tumor cell lines. Conclusions: We found that NLRC5 acts as a key transcriptional regulator of MHC class I genes, in particular in lymphocytes. Loss of NLRC5 expression represents an advantage for evading CD8+ T cellmediated elimination by downmodulation of MHCI levels * a mechanism transformed cells may take advantage of. Therefore, our data support an essential role for NLRs in directing not only innate, but also adaptive immune responses (Staehli F et al. J Immunol 2012).
Resumo:
Besides tumor cells, the tumor microenvironment harbors a variety of host-derived cells, such as endothelial cells, fibroblasts, innate and adaptive immune cells. It is a complex and highly dynamic environment, providing very important cues to tumor development and progression. Tumor-associated endothelial cells play a key role in this process. On the one hand, they form tumor-associated (angiogenic) vessels through sprouting from locally preexisting vessels or recruitment of bone marrow-derived endothelial progenitor cells, to provide nutritional support to the growing tumor. On the other hand, they are the interface between circulating blood cells, tumor cells and the extracellular matrix, thereby playing a central role in controlling leukocyte recruitment, tumor cell behavior and metastasis formation. Hypoxia is a critical parameter modulating the tumor microenvironment and endothelial/tumor cell interactions. Under hypoxic stress, tumor cells produce factors that promote tumor angiogenesis, tumor cell motility and metastasis. Among these factors, VEGF, a main angiogenesis modulator, can also play a critical role in the control of immune tolerance. This review discusses some aspects of the role of endothelial cells within tumor microenvironment and emphasizes their interaction with tumor cells, the extracellular matrix and with immune killer cells. We will also address the role played by circulating endothelial progenitor cells and illustrate their features and mechanism of recruitment to the tumor microenvironment and their role in tumor angiogenesis.
Resumo:
Mucosal immunity to the enteric pathogen Shigella flexneri is mediated by secretory IgA (S-IgA) antibodies directed against the O-antigen (O-Ag) side chain of lipopolysaccharide. While secretory antibodies against the O-Ag are known to prevent bacterial invasion of the intestinal epithelium, the mechanisms by which this occurs are not fully understood. In this study, we report that the binding of a murine monoclonal IgA (IgAC5) to the O-Ag of S. flexneri serotype 5a suppresses activity of the type 3 secretion (T3S) system, which is necessary for S. flexneri to gain entry into intestinal epithelial cells. IgAC5's effects on the T3S were rapid (5 to 15 min) and were coincident with a partial reduction in the bacterial membrane potential and a decrease in intracellular ATP levels. Activity of the T3S system returned to normal levels 45 to 90 min following antibody treatment, demonstrating that IgAC5's effects were transient. Nonetheless, these data suggest a model in which the association of IgA with the O-Ag of S. flexneri partially de-energizes the T3S system and temporarily renders the bacterium incapable of invading intestinal epithelial cells. IMPORTANCE: Secretory IgA (S-IgA) serves as the first line of defense against enteric infections. However, despite its well-recognized role in mucosal immunity, relatively little is known at the molecular level about how this class of antibody functions to prevent pathogenic bacteria from penetrating the epithelial barrier. It is generally assumed that S-IgA functions primarily by "immune exclusion," a phenomenon in which the antibody binds to microbial surface antigens and thereby promotes bacterial agglutination, entrapment in mucus, and physical clearance from the gastrointestinal tract via peristalsis. The results of the present study suggest that in addition to serving as a physical barrier, S-IgA may have a direct impact on the ability of microbial pathogens to secrete virulence factors required for invasion of intestinal epithelial cells.
Resumo:
The development of a protective immune response to microorganisms involves complex interactions between the host and the pathogen. The murine model of infection with Leishmania major (L. major) allows the study of the factors leading to the development of a protective immune response. Following infection with the protozoan parasite L. major, most strains of mice heal their lesions, while a few fail to control infection, both processes linked to the development of specific T helper subsets. The early events occurring during the first days following parasite inoculation are thought to be critical in the development of the Leishmania-specific immune response. Neutrophils are the first cells arriving massively to the site of infection, and recent evidence points to their role as organizers of the immune response, yet their specific role in this process remains elusive. Through interactions with cells present at the parasite inoculation site, and possibly within the draining lymph nodes, neutrophils could have an impact not only on the recruitment of inflammatory cells but also on the activation of local as well as newly migrated cells that will be crucial in shaping the Leishmania-specific immune response.
Resumo:
Les cancers du col utérin et de la vessie prennent tous deux leur origine dans les sites muqueux et peuvent évoluer lentement de lésions superficielles (lésions squameuses intra-épithéliales de bas à haut grade (HSIL) et carcinomes in situ du col utérin (CIS); ou tumeurs non musculo-invasives de la vessie (NMIBC)) à des cancers invasifs plus avancés. L'éthiologie de ces deux cancers est néanmoins très différente. Le cancer du col utérin est, à l'échelle mondiale, le deuxième cancer le plus mortel chez la femme. Ce cancer résulte de l'infection des cellules basales de l'épithélium stratifié du col utérin par le papillomavirus humain à haut risque (HPV). Les vaccins prophylactiques récemment développés contre le HPV (Gardasil® et Cervarix®) sont des moyens de prévention efficaces lorsqu'ils sont administrés chez les jeunes filles qui ne sont pas encore sexuellement actives; cependant ces vaccins ne permettent pas la régression des lésions déjà existantes. Malgré un développement actif, les vaccins thérapeutiques ciblant les oncogènes viraux E6/E7 n'ont montré qu'une faible efficacité clinique jusqu'à présent. Nous avons récemment démontré qu'une immunisation sous-cutanée (s.c.) était capable de faire régresser les petites tumeurs génitales chez 90% des souris, mais chez seulement 20% des souris présentant de plus grandes tumeurs. Dans cette étude, nous avons développé une nouvelle stratégie où la vaccination est associée à une application locale (intra-vaginale (IVAG)) d'agonistes de TLR. Celle-ci induit une augmentation des cellules T CD8 totales ainsi que T CD8 spécifiques au vaccin, mais pas des cellules T CD4. L'attraction sélective des cellules T CD8 est permise par leur expression des récepteurs de chemokines CCR5 et CXCR3 ainsi que par les ligants E-selectin. La vaccination, suivie de l'application IVAG de CpG, a conduit, chez 75% des souris, à la régression de grandes tumeurs établies. Le cancer de la vessie est le deuxième cancer urologique le plus fréquente. La plupart des tumeurs sont diagnostiquées comme NMIBC et sont restreintes à la muqueuse de la vessie, avec une forte propension à la récurrence et/ou progression après une résection locale. Afin de développer des vaccins contre les antigènes associés à la tumeur (TAA), il est nécessaire de trouver un moyen d'induire une réponse immunitaire CD8 spécifique dans la vessie. Pour ce faire, nous avons comparé différentes voies d'immunisation, en utilisant un vaccin composé d'adjuvants et de l'oncogène de HPV (E7) comme modèle. Les vaccinations s.c. et IVAG ont toutes deux induit un nombre similaire de cellules T CD8 spécifiques du vaccin dans la vessie, alors que l'immunisation intra-nasale fut inefficace. Les voies s.c. et IVAG ont induit des cellules T CD8 spécifiques du vaccin exprimant principalement aL-, a4- et le ligand d'E-selectin, suggérant que ces intégrines/sélectines sont responsables de la relocalisation des cellules T dans la vessie. Une unique immunisation avec E7 a permis une protection tumorale complète lors d'une étude prophylactique, indépendemment de la voie d'immunisation. Dans une étude thérapeutique, seules les vaccinations s.c. et IVAG ont efficacement conduit, chez environ 50% des souris, à la régression de tumeurs de la vessie établies, alors que l'immunisation intra-nasale n'a eu aucun effet. La régression de la tumeur est correlée avec l'infiltration dans la tumeur des cellules T CD8 spécifiques au vaccin et la diminution des cellules T régulatrices (Tregs). Afin d'augmenter l'efficacité de l'immunisation avec le TAA, nous avons testé une vaccination suivie de l'instillation d'agonistes de TLR3 et TLR9, ou d'un vaccin Salmonella Typhi (Ty21a). Cette stratégie a entraîné une augmentation des cellules T CD8 effectrices spécifiques du vaccin dans la vessie, bien qu'à différentes échelles. Ty21a étant l'immunostimulant le plus efficace, il mérite d'être étudié de manière plus approfondie dans le contexte du NMIBC. - Both cervical and bladder cancer originates in mucosal sites and can slowly progress from superficial lesions (low to high-grade squamous intra-epithelial lesions (HSIL) and carcinoma in situ (CIS) in the cervix; or non-muscle invasive tumors in the bladder (NMIBC)), to more advanced invasive cancers. The etiology of these two cancers is however very different. Cervical cancer is the second most common cause of cancer death in women worldwide. This cancer results from the infection of the basal cells of the stratified epithelium of the cervix by high-risk human papillomavirus (HPV). The recent availability of prophylactic vaccines (Gardasil® and Cervarix®) against HPV is an effective strategy to prevent this cancer when administered to young girls before sexual activity; however, these vaccines do not induce regression of established lesions. Despite active development, therapeutic vaccines targeting viral oncogenes E6/E7 had limited clinical efficacy to date. We recently reported that subcutaneous (s.c.) immunization was able to regress small genital tumors in 90% of the mice, but only 20% of mice had regression of larger tumors. Here, we developed a new strategy where vaccination is combined with the local (intravaginal (IVAG)) application of TLR agonists. This new strategy induced an increase of both total and vaccine-specific CD8 T cells in cervix-vagina, but not CD4 T cells. The selective attraction of CD8 T cells is mediated by the expression of CCR5 and CXCR3 chemokine receptors and E-selectin ligands in these cells. Vaccination followed by IVAG application of CpG resulted in tumor regression of large established tumors in 75% of the mice. Bladder cancer is the second most common urological malignancy. Most tumors are diagnosed as NMIBC, and are restricted to the mucosal bladder with a high propensity to recur and/or progress after local resection. Aiming to develop vaccines against tumor associated antigens (TAA) it is necessary to investigate how to target vaccine-specific T-cell immune responses to the bladder. Here we thus compared using an adjuvanted HPV oncogene (E7) vaccine, as a model, different routes of immunization. Both s.c. and IVAG vaccination induced similar number of vaccine-specific CD8 T-cells in the bladder, whereas intranasal (i.n.) immunization was ineffective. S.c. and IVAG routes induced predominantly aL-, a4- and E-selectin ligand-expressing vaccine-specific CD8 T-cells suggesting that these integrin/selectin are responsible for T-cell homing to the bladder. A single E7 immunization conferred full tumor protection in a prophylactic setting, irrespective of the immunization route. In a therapeutic setting, only ivag and s.c. vaccination efficiently regressed established bladder-tumors in ca. 50 % of mice, whereas i.n. immunization had no effect. Tumor regression correlated with vaccine- specific CD8 T cell tumor-infiltration and decrease of regulatory T cells (Tregs). To increase efficacy of TAA immunization, we tested vaccination followed by the local instillation of TLR3 or TLR9 agonist or of a Salmonella Typhi vaccine (Ty21a). This strategy resulted in an increase of vaccine-specific effector CD8 T cells in the bladder, although at different magnitudes. Ty21a being the most efficient, it deserves further investigation in the context of NMIBC. We further tested another strategy to improve therapies of NMIBC. In the murine MB49 bladder tumor model, we replaced the intravesical (ives) BCG therapy by another vaccine strain the Salmonella Ty21a. Ives Ty21a induced bladder tumor regression at least as efficiently as BCG. Ty21a bacteria did not infect nor survive neither in healthy nor in tumor-bearing bladders, suggesting its safety. Moreover, Ty21a induced a transient inflammatory response in healthy bladders, mainly through infiltration of neutrophils and macrophages that rapidly returned to basal levels, confirming its potential safety. The tumor regression was associated to a robust infiltration of immune cells, and secretion of cytokines in urines. Infection of murine tumor cell lines by Ty21a resulted in cell apoptosis. The infection of both murine and human urothelial cell lines induced secretion of in vitro inflammatory cytokines. Ty21a may be an attractive alternative for the ives treatment of NMIBC after transurethral resection and thus deserves more investigation.
Resumo:
Type 1 diabetes (T1D) is rarely a component of primary immune dysregulation disorders. We report two cases in which T1D was associated with thrombocytopenia. The first patient, a 13-year-old boy, presented with immune thrombocytopenia (ITP), thyroiditis, and, 3 wk later, T1D. Because of severe thrombocytopenia resistant to immunoglobulins, high-dose steroids, and cyclosporine treatment, anti-cluster of differentiation (CD20) therapy was introduced, with consequent normalization of thrombocytes and weaning off of steroids. Three and 5 months after anti-CD20 therapy, levothyroxin and insulin therapy, respectively, were stopped. Ten months after stopping insulin treatment, normal C-peptide and hemoglobin A1c (HbA1c) levels and markedly reduced anti-glutamic acid decarboxylase (GAD) antibodies were measured. A second anti-CD20 trial for relapse of ITP was initiated 2 yr after the first trial. Anti-GAD antibody levels decreased again, but HbA1c stayed elevated and glucose monitoring showed elevated postprandial glycemia, demanding insulin therapy. To our knowledge, this is the first case in which insulin treatment could be interrupted for 28 months after anti-CD20 treatment. In patient two, thrombocytopenia followed a diagnosis of T1D 6 yr previously. Treatment with anti-CD20 led to normalization of thrombocytes, but no effect on T1D was observed. Concerning the origin of the boys' conditions, several primary immune dysregulation disorders were considered. Thrombocytopenia associated with T1D is unusual and could represent a new entity. The diabetes manifestation in patient one was probably triggered by corticosteroid treatment; regardless, anti-CD20 therapy appeared to be efficacious early in the course of T1D, but not long after the initial diagnosis of T1D, as shown for patient two.
Resumo:
In the gastro-intestinal tract,Peyers patches have been describedas a major inductive site for mucosalsecretory IgA (SIgA) responses directedagainst pathogens. The classicalview is that SIgAserves as the firstline of defense against microorganismsby agglutining potential invadersand faciliting their clearance byperistaltic and mucociliary movements,a mechanism called immuneexclusion. Our laboratory has shownthat SIgA is not only able to be"retrotransported" into Peyers patchesvia the associated M cells, but also todeliver sizeable cargos in the form ofSIgA-based immune complexes, resultingin the onset of non-inflammatorytype of responses. Such a novelfunction raises the question of thepossible role of mucosal SIgA in theinterplay with commensal bacteriaand the contribution of the antibody inbacterial homeostasis. To address thisquestion, Lactobacillus rhamnosus(LPR) was administered into a mouseligated loop comprising a Peyerspatch, in association or not with SIgA.The fate of fluorescently labelled bacteriawas followed by laser scanningconfocal microscopy at different incubationtimes. After 2 hours of incubationin the loop, LPR bacteria arefound more abundantly in thesubepithelial dome (SED) regionwhen they are coated with SIgA thanLPR administered alone despite theyare absent from neighboring villi.Herein, it is shown that this mechanismof entry involves M cells inPeyers pathes. After their sampling byM cells, bacteria are engulfed by thedendritic cells of the subjacent SEDregion. Interestingly, LPR bacteriaare found coated by the endogenousnatural SIgA present in mice intestinalsecretions, confirming the requirementof SIgA for this type of entry.The subsequent effect on the maturationof dendritic cells after interactionwith LPR was investigated in vitroin presence or not of SIgA by measuringthe expression of CD40, CD80and CD86 surface markers with flowcytometry analyses. Results show thatDCs respond in the same way in presenceof SIgA than with LPR bacteriaalone, indicating that SIgA does notmodulate the interaction betweenDCs and bacteria in this context. Thiswork gives new evidences about theinvolvement of SIgA in the mechanismby which the intestinal immunesystem permanently checks the contentof the intestine.
Resumo:
RESUME : La ghrelin est un peptide sécrété par l'estomac jouant un rôle important dans le maintien de l'homéostasie énergétique. Ses taux plasmatiques sont augmentés durant des périodes prolongées de déficit nutritionnel. Une carence énergétique étant souvent associée à une inhibition de l'axe hypothalamo-hypophyso-ovarien, nous avons postulé que l'augmentation des taux circulant de ghrelin pourrait diminuer l'activité du générateur hypothalamique de pulsations de GnRH. Le protocole expérimental impliquait des singes rhésus adultes ovariectomisés (n=6) qui dans un premier temps recevaient durant 3 heures une perfusion de solution saline physiologique afin de mesurer la sécrétion pulsatile de LH à l'état basai. L'expérience se poursuivait alors durant 5 heures par une perfusion intraveineuse de ghrelin humaine (un bolus de 100-150µg suivi par 100-150µg/h) ou le maintien de la perfusion de solution saline physiologique. Des échantillons de sang étaient prélevés toutes les 15 minutes. La perfusion de ghrelin a augmenté ses taux plasmatiques de 2.9 fois par rapport aux valeurs de base. L'administration de ghrelin a significativement diminué la fréquence des pulsations de LH (de 0.89±0.07/h à l'état basai à 0.57±0.10/h durant la perfusion de ghrelin; p<0.05, moyenne±SEM), alors que la fréquence des pulsations de LH est restée inchangée durant la perfusion de solution physiologique. L'amplitude des pulsations de LH n'a pas été modifiée. La ghrelin a également stimulé de manière significative la sécrétion de cortisol et d'hormone de croissance, mais n'a toutefois pas eu d'effet sur la sécrétion de leptin. En conclusion, la ghrelin peut inhiber l'activité du générateur de pulsations de GnRH et pourrait ainsi contribuer à l'inhibition de l'axe de la reproduction observée durant des périodes de carence nutritionnelle, comme notamment chez les patientes souffrant d'anorexie mentale. La ghrelin peut également activer l'axe hypothalamo-hypophyso-surrénalien. Le lien dans cette situation entre l'activation de l'axe surrénalien et l'inhibition de l'axe de la reproduction reste à démontrer. ABSTRACT: Ghrelin, a nutrition-related peptide secreted by the stomach, is elevated during prolonged food deprivation. Because undernutrition is often associated with a suppressed reproductive axis, we have postulated that increasing peripheral ghrelin levels will decrease the activity of the GnRH pulse generator. Adult ovariectomized rhesus monkeys (n = 6) were subjected to a 5-h iv human ghrelin (100- to 150µg bolus followed by 100-150 µg/h) or saline infusion, preceded by a 3-h saline infusion to establish baseline pulsatile LH release. Blood samples were collected at 15-min intervals throughout the experiment. Ghrelin infusion increased plasma ghrelin levels 2.9-fold of baseline. Ghrelin significantly decreased LH pulse frequency (from 0.89 ± 0.07/h in baseline to 0.57 ± 0.10/h during ghrelin infusion; P<0.05, mean ± SEM), whereas LH pulse frequency remained unchanged during saline treatment. LH pulse amplitude was not affected. Ghrelin also significantly stimulated both Cortisol and GH release, but had no effect on leptin. We conclude that ghrelin can inhibit GnRH pulse activity and may thereby mediate the suppression of the reproductive system observed in conditions of undernutrition, such as in anorexia nervosa. Ghrelin also activates the adrenal axis, but the relevance of this to the inhibition of GnRH pulse frequency remains to be established.
Resumo:
To newly identify loci for age at natural menopause, we carried out a meta-analysis of 22 genome-wide association studies (GWAS) in 38,968 women of European descent, with replication in up to 14,435 women. In addition to four known loci, we identified 13 loci newly associated with age at natural menopause (at P < 5 × 10(-8)). Candidate genes located at these newly associated loci include genes implicated in DNA repair (EXO1, HELQ, UIMC1, FAM175A, FANCI, TLK1, POLG and PRIM1) and immune function (IL11, NLRP11 and PRRC2A (also known as BAT2)). Gene-set enrichment pathway analyses using the full GWAS data set identified exoDNase, NF-κB signaling and mitochondrial dysfunction as biological processes related to timing of menopause.
Resumo:
Progressive multifocal leukoencephalopathy (PML) is a frequently fatal disease caused by uncontrolled polyomavirus JC (JCV) in severely immunodeficient patients. We investigated the JCV-specific cellular and humoral immunity in the Swiss HIV Cohort Study. We identified PML cases (n = 29), as well as three matched controls per case (n = 87), with prospectively cryopreserved peripheral blood mononuclear cells and plasma at diagnosis. Nested controls were matched according to age, gender, CD4(+) T-cell count, and decline. Survivors (n = 18) were defined as being alive for >1 year after diagnosis. Using gamma interferon enzyme-linked immunospot assays, we found that JCV-specific T-cell responses were lower in nonsurvivors than in their matched controls (P = 0.08), which was highly significant for laboratory- and histologically confirmed PML cases (P = 0.004). No difference was found between PML survivors and controls or for cytomegalovirus-specific T-cell responses. PML survivors showed significant increases in JCV-specific T cells (P = 0.04) and immunoglobulin G (IgG) responses (P = 0.005). IgG responses in survivors were positively correlated with CD4(+) T-cell counts (P = 0.049) and negatively with human immunodeficiency virus RNA loads (P = 0.03). We conclude that PML nonsurvivors had selectively impaired JCV-specific T-cell responses compared to CD4(+) T-cell-matched controls and failed to mount JCV-specific antibody responses. JCV-specific T-cell and IgG responses may serve as prognostic markers for patients at risk.
Resumo:
Endosomal and cytosolic nucleic acid receptors are important immune sensors required for the detection of infecting or replicating viruses. The intracellular location of these receptors allows viral recognition and, at the same time, avoids unnecessary immune activation to self-nucleic acids that are continuously released by dying host cells. Recent evidence, however, indicates that endogenous factors such as anti-microbial peptides have the ability to break this protective mechanism. Here, we discuss these factors and illustrate how they drive inflammatory responses by promoting immune recognition of self-nucleic acids in skin wounds and inflammatory skin diseases such as psoriasis and lupus.
Resumo:
When exposed to parasites, hosts often mount energetically expensive immune responses, and this may alter resource allocation between competing life history traits including other components of the immune system. Here, we investigated whether a humoral immune challenge towards a vaccine reduces or enhances the cutaneous immune responses towards an injection of lipopolysaccharid (LPS, innate immunity) and phytohaemagglutinin (PHA, T-cell immunity) in nestling tawny owls in interaction with the degree of plumage melanin-based coloration. The humoral immune challenge enhanced the response to LPS similarly in differently coloured nestlings. In contrast, the same humoral immune challenge enhanced immune response to PHA in dark reddish melanic nestlings while reducing it in pale reddish melanic nestlings. Our results highlight that both antagonistic and synergistic interactions can take place among branches of immune system, and that the sign and magnitude of these interactions can vary with immune responses involved and the degree of melanin-based coloration.
Resumo:
To evaluate the in-hospital outcome of STEMI (ST elevation myocardial infarction) patients admitted to Swiss hospitals between 2000 and December 2007, and to identify the predictors of in-hospital mortality and major cardiac events. Data from the Swiss national registry AMIS Plus (Acute Myocardial Infarction and Unstable Angina in Switzerland) were used. All patients admitted between January 2000 and December 2007 with STEMI or a new LBBB (left bundle branch block) were included in the registry. We studied 12 026 STEMI patients admitted to 68 hospitals. The mean age was 64 +/- 13 years and 73% of the patients were male. Incidence of in-hospital death was 7.6% in 2000 and 6% in 2007. Reinfarction fell from 3.7% in 2000 to 0.9% in 2007. Thrombolysis decreased from 40.2% in 2000 to 2% in 2007. Clinical predictors of mortality were: age >65 years, Killips class III or IV, diabetes, Q wave myocardial infarction (at presentation). Patients undergoing percutaneous coronary intervention (PCI) had lower mortality and reinfarction rates (3.9% versus 11.2% and 1.1% versus 3.1% respectively, p <0.001) over time, although their numbers increased from 43% in 2000 to 85% in 2007. Patients admitted to hospitals with PCI facilities had lower mortality than patients hospitalised in hospitals without it, but the demographic characteristics differ widely between the two groups. Both in-hospital mortality and reinfarction decreased significantly over the time, parallel to an increased number of PCI. PCI was also the strongest predictor of survival. In-hospital mortality and reinfarction rate have decreased significantly in Swiss STEMI patients in the last seven years, parallel to a significant increase in the number of percutaneous coronary interventions in addition to medical therapy. Outcome is not related to the site of admission but to PCI access.
Resumo:
BACKGROUND: The central function of dendritic cells (DC) in inducing and preventing immune responses makes them ideal therapeutic targets for the induction of immunologic tolerance. In a rat in vivo model, we showed that dexamethasone-treated DC (Dex-DC) induced indirect pathway-mediated regulation and that CD4+CD25+ T cells were involved in the observed effects. The aim of the present study was to investigate the mechanisms underlying the acquired immunoregulatory properties of Dex-DC in the rat and human experimental systems. METHODS: After treatment with dexamethasone (Dex), the immunogenicity of Dex-DC was analyzed in T-cell proliferation and two-step hyporesponsiveness induction assays. After carboxyfluorescein diacetate succinimidyl ester labeling, CD4+CD25+ regulatory T-cell expansion was analyzed by flow cytometry, and cytokine secretion was measured by ELISA. RESULTS: In this study, we demonstrate in vitro that rat Dex-DC induced selective expansion of CD4+CD25+ regulatory T cells, which were responsible for alloantigen-specific hyporesponsiveness. The induction of regulatory T-cell division by rat Dex-DC was due to secretion of interleukin (IL)-2 by DC. Similarly, in human studies, monocyte-derived Dex-DC were also poorly immunogenic, were able to induce T-cell anergy in vitro, and expand a population of T cells with regulatory functions. This was accompanied by a change in the cytokine profile in DC and T cells in favor of IL-10. CONCLUSION: These data suggest that Dex-DC induced tolerance by different mechanisms in the two systems studied. Both rat and human Dex-DC were able to induce and expand regulatory T cells, which occurred in an IL-2 dependent manner in the rat system.