263 resultados para dosage rapide
Resumo:
Résumé grand public :Le cerveau se compose de cellules nerveuses appelées neurones et de cellules gliales dont font partie les astrocytes. Les neurones communiquent entre eux par signaux électriques et en libérant des molécules de signalisation comme le glutamate. Les astrocytes ont eux pour charge de capter le glucose depuis le sang circulant dans les vaisseaux sanguins, de le transformer et de le transmettre aux neurones pour qu'ils puissent l'utiliser comme source d'énergie. L'astrocyte peut ensuite utiliser ce glucose de deux façons différentes pour produire de l'énergie : la première s'opère dans des structures appelées mitochondries qui sont capables de produire plus de trente molécules riches en énergie (ATP) à partir d'une seule molécule de glucose ; la seconde possibilité appelée glycolyse peut produire deux molécules d'ATP et un dérivé du glucose appelé lactate. Une théorie couramment débattue propose que lorsque les astrocytes capturent le glutamate libéré par les neurones, ils libèrent en réponse du lactate qui servirait de base énergétique aux neurones. Cependant, ce mécanisme n'envisage pas une augmentation de l'activité des mitochondries des astrocytes, ce qui serait pourtant bien plus efficace pour produire de l'énergie.En utilisant la microscopie par fluorescence, nous avons pu mesurer les changements de concentrations ioniques dans les mitochondries d'astrocytes soumis à une stimulation glutamatergique. Nous avons démontré que les mitochondries des astrocytes manifestent des augmentations spontanées et transitoires de leur concentrations ioniques, dont la fréquence était diminuée au cours d'une stimulation avec du glutamate. Nous avons ensuite montré que la capture de glutamate augmentait la concentration en sodium et acidifiait les mitochondries des astrocytes. En approfondissant ces mécanismes, plusieurs éléments ont suggéré que l'acidification induite diminuerait le potentiel de synthèse d'énergie d'origine mitochondriale et la consommation d'oxygène dans les astrocytes. En résumé, l'ensemble de ces travaux suggère que la signalisation neuronale impliquant le glutamate dicte aux astrocytes de sacrifier temporairement l'efficacité de leur métabolisme énergétique, en diminuant l'activité de leurs mitochondries, afin d'augmenter la disponibilité des ressources énergétiques utiles aux neurones.Résumé :La remarquable efficacité du cerveau à compiler et propager des informations coûte au corps humain 20% de son budget énergétique total. Par conséquent, les mécanismes cellulaires responsables du métabolisme énergétique cérébral se sont adéquatement développés pour répondre aux besoins énergétiques du cerveau. Les dernières découvertes en neuroénergétique tendent à démontrer que le site principal de consommation d'énergie dans le cerveau est situé dans les processus astrocytaires qui entourent les synapses excitatrices. Un nombre croissant de preuves scientifiques a maintenant montré que le transport astrocytaire de glutamate est responsable d'un coût métabolique important qui est majoritairement pris en charge par une augmentation de l'activité glycolytique. Cependant, les astrocytes possèdent également un important métabolisme énergétique de type mitochondrial. Par conséquent, la localisation spatiale des mitochondries à proximité des transporteurs de glutamate suggère l'existence d'un mécanisme régulant le métabolisme énergétique astrocytaire, en particulier le métabolisme mitochondrial.Afin de fournir une explication à ce paradoxe énergétique, nous avons utilisé des techniques d'imagerie par fluorescence pour mesurer les modifications de concentrations ioniques spontanées et évoquées par une stimulation glutamatergique dans des astrocytes corticaux de souris. Nous avons montré que les mitochondries d'astrocytes au repos manifestaient des changements individuels, spontanés et sélectifs de leur potentiel électrique, de leur pH et de leur concentration en sodium. Nous avons trouvé que le glutamate diminuait la fréquence des augmentations spontanées de sodium en diminuant le niveau cellulaire d'ATP. Nous avons ensuite étudié la possibilité d'une régulation du métabolisme mitochondrial astrocytaire par le glutamate. Nous avons montré que le glutamate initie dans la population mitochondriale une augmentation rapide de la concentration en sodium due à l'augmentation cytosolique de sodium. Nous avons également montré que le relâchement neuronal de glutamate induit une acidification mitochondriale dans les astrocytes. Nos résultats ont indiqué que l'acidification induite par le glutamate induit une diminution de la production de radicaux libres et de la consommation d'oxygène par les astrocytes. Ces études ont montré que les mitochondries des astrocytes sont régulées individuellement et adaptent leur activité selon l'environnement intracellulaire. L'adaptation dynamique du métabolisme énergétique mitochondrial opéré par le glutamate permet d'augmenter la quantité d'oxygène disponible et amène au relâchement de lactate, tous deux bénéfiques pour les neurones.Abstract :The remarkable efficiency of the brain to compute and communicate information costs the body 20% of its total energy budget. Therefore, the cellular mechanisms responsible for brain energy metabolism developed adequately to face the energy needs. Recent advances in neuroenergetics tend to indicate that the main site of energy consumption in the brain is the astroglial process ensheating activated excitatory synapses. A large body of evidence has now shown that glutamate uptake by astrocytes surrounding synapses is responsible for a significant metabolic cost, whose metabolic response is apparently mainly glycolytic. However, astrocytes have also a significant mitochondrial oxidative metabolism. Therefore, the location of mitochondria close to glutamate transporters raises the question of the existence of mechanisms for tuning their energy metabolism, in particular their mitochondrial metabolism.To tackle these issues, we used real time imaging techniques to study mitochondrial ionic alterations occurring at resting state and during glutamatergic stimulation of mouse cortical astrocytes. We showed that mitochondria of intact resting astrocytes exhibited individual spontaneous and selective alterations of their electrical potential, pH and Na+ concentration. We found that glutamate decreased the frequency of mitochondrial Na+ transient activity by decreasing the cellular level of ATP. We then investigated a possible link between glutamatergic transmission and mitochondrial metabolism in astrocytes. We showed that glutamate triggered a rapid Na+ concentration increase in the mitochondrial population as a result of plasma-membrane Na+-dependent uptake. We then demonstrated that neuronally released glutamate also induced a mitochondrial acidification in astrocytes. Glutamate induced a pH-mediated and cytoprotective decrease of mitochondrial metabolism that diminished oxygen consumption. Taken together, these studies showed that astrocytes contain mitochondria that are individually regulated and sense the intracellular environment to modulate their own activity. The dynamic regulation of astrocyte mitochondrial energy output operated by glutamate allows increasing oxygen availability and lactate production both being beneficial for neurons.
Resumo:
Actinic keratosis (AK) affects millions of people worldwide, and its prevalence continues to increase. AK lesions are caused by chronic ultraviolet radiation exposure, and the presence of two or more AK lesions along with photodamage should raise the consideration of a diagnosis of field cancerization. Effective treatment of individual lesions as well as field cancerization is essential for good long-term outcomes. The Swiss Registry of Actinic Keratosis Treatment (REAKT) Working Group has developed clinical practice guidelines for the treatment of field cancerization in patients who present with AK. These guidelines are intended to serve as a resource for physicians as to the most appropriate treatment and management of AK and field cancerization based on current evidence and the combined practical experience of the authors. Treatment of AK and field cancerization should be driven by consideration of relevant patient, disease, and treatment factors, and appropriate treatment decisions will differ from patient to patient. Prevention measures and screening recommendations are discussed, and special considerations related to management of immunocompromised patients are provided.
Resumo:
Adrenocortical carcinomas are rare and aggressive malignant tumors, with an incidence of 1 to 2 cases per million inhabitants. Their diagnosis is made in three clinical situations: during the work up of a syndrome of hormonal hypersecretion, during the work up of locoregional symptoms, or incidentally during an unrelated radiological procedure. Surgery is usually indicated except in situations of advanced metastatic disease. Adjuvant chemotherapy with mitotane is associated with a significant increase in disease-free survival when the drug is administered at adequate therapeutic dosage. Novel anti-mitotic therapies have recently been described for treating recurrent adrenocortical carcinoma under mitotane treatment, but their overall efficacy remains unsatisfactory.
Resumo:
Introduction: The last twenty years has witnessed important changes in the field of obstetric analgesia and anesthesia. In 2007, we conducted a survey to obtain information regarding the clinical practice of obstetric anesthesia in our country. The main objective was to ascertain whether recent developments in obstetric anesthesia had been adequately implemented into current clinical practice. Methodology: A confidential questionnaire was sent to 391 identified wiss obstetric anesthetists. The questionnaire included 58 questions on 5 main topics: activity and organization of the obstetric unit, practice of labor analgesia, practice of anesthesia for caesarean section, prevention of aspiration syndrome, and pain treatment after cesarean section. Results: The response rate was 80% (311/391). 66% of the surveyed anesthetists worked in intermediate size obstetric units (500-1500 deliveries per year). An anesthetist was on site 24/24 hours in only 53% of the obstetric units. Epidural labor analgesia with low dose local anesthetics combined with opioids was used by 87% but only 30% used patient controlled epidural analgesia (PCEA). Spinal anesthesia was the first choice for elective and urgent cesarean section for 95% of the responders. Adequate prevention of aspiration syndrome was prescribed by 78%. After cesarean section, a multimodal analgesic regimen was prescribed by 74%. Conclusion: When comparing these results with those of the two previous Swiss surveys [1, 2], it clearly appears that Swiss obstetric anesthetists have progressively adapted their practice to current clinical recommendations. But this survey also revealed some insufficiencies: 1. Of the public health system: a. Insufficient number of obstetric anesthetists on site 24 hours/24. b. Lack of budget in some hospitals to purchase PCEA pumps. 2. Of individual medical practice: a. Frequent excessive dosage of hyperbaric bupivacaine during spinal anesthesia for cesarean section. b. Frequent use of cristalloid preload before spinal anesthesia for cesarean section. c. Frequent systematic use of opioids when inducing general anesthesia for cesarean section. d. Fentanyl as the first choice opioid during induction of general anesthesia for severe preeclampsia. In the future, wider and more systematic information campaigns by the mean of the Swiss Association of Obstetric Anesthesia (SAOA) should be able to correct these points.
Resumo:
OBJECTIVE: To investigate the relationships between diet composition, body composition, and macronutrient oxidation at rest in obese and non-obese children. DESIGN: Cross-sectional study on fat intake, adiposity and postabsorptive macronutrients oxidation rates. SUBJECTS: 82 prepubertal (age: 9.1 +/- 1.1 y) children, 30 obese (FM = 32.6 +/- 6.1%) and 52 non-obese (FM = 15.6 +/- 5.1%). MEASUREMENTS: Subcutaneous skinfold thickness for body composition, diet history for energy and nutrient intake, indirect calorimetry for resting metabolic rate (RMR) and RQ measurement. RESULTS: Energy intake (EI) was comparable in obese and non-obese children. Adjusted for RMR by ANCOVA, using RMR as the covariate, EI was significantly lower in obese than in non-obese children indicating either a blunted physical activity or a systematic underestimation of EI. Protein and carbohydrate intakes expressed as a percentage of total energy intake (%EI) were not significantly different in the two groups. Lipid intake (%EI) was slightly but significantly higher in the obese than in the non-obese group either unadjusted or adjusted for RMR by ANCOVA. The postabsorptive RQ was significantly lower in obese than in non-obese children. In the total group, %FM was weakly but significantly correlated to lipid intake (%EI). CONCLUSION: Obese prepubertal children have a higher relative fat intake than non-obese children and their FM is associated with this factor. The lower postabsorptive RQ of obese children may indicate a compensatory mechanism to achieve fat equilibrium by enhanced fat oxidation.
Resumo:
Extranodal NK/T-cell lymphoma, nasal type, is a rare and highly aggressive disease with a grim prognosis. No therapeutic strategy is currently identified in relapsing patients. We report the results of a French prospective phase II trial of an L-asparaginase-containing regimen in 19 patients with relapsed or refractory disease treated in 13 centers. Eleven patients were in relapse and 8 patients were refractory to their first line of treatment. L-Asparaginase-based treatment yielded objective responses in 14 of the 18 evaluable patients after 3 cycles. Eleven patients entered complete remission (61%), and only 4 of them relapsed. The median overall survival time was 1 year, with a median response duration of 12 months. The main adverse events were hepatitis, cytopenia, and allergy. The absence of antiasparaginase antibodies and the disappearance of Epstein-Barr virus serum DNA were significantly associated with a better outcome. These data confirm the excellent activity of L-asparaginase-containing regimens in extranodal NK/T-cell lymphoma. L-Asparaginase-based treatment should thus be considered for salvage therapy, especially in patients with disseminated disease. First-line L-asparaginase combination therapy for extranodal NK/T-cell lymphoma warrants evaluation in prospective trials. This trial is registered at www.clinicaltrials.gov as #NCT00283985.
Resumo:
Les virus sont présents dans la plupart des environnements. Grâce aux outils moléculaires, il est maintenant possible de les mettre en évidence facilement, ce qui était difficile auparavant car cela nécessitait une infrastructure relativement complexe (cultures cellulaires ou inoculation à des animaux). En 2002, à l'aide de la métagénomique, une approche expérimentale a permis de montrer la présence de > 5 000 virus différents dans 200 litres d'eau de mer (Breitbart et al., 2002). Tous ces virus étaient essentiellement de nouvelles espèces. Ainsi, les études cherchant à détecter des virus pathogènes dans des échantillons environnementaux se sont multipliées afin de mieux comprendre leurs cycles vitaux, leurs voies de contamination et leur survie dans la nature. L'homme et les animaux contractent des virus essentiellement par ingestion d'eau contaminée ou par voies manuportée et aéroportée. Certains de ces virus (i.e. virus de la grippe aviaire H5N1, SRAS) sont à l'origine de sérieux problèmes de santé publique de par : leur dissémination rapide, leur caractère zoonotique et la difficulté à traiter les personnes atteintes.Les trois articles présentés dans cette note montrent 1) les propriétés de survie étonnantes de l'adénovirus dans les eaux souterraines ; 2) la dynamique saisonnière du norovirus également dans les eaux souterraines et 3) le rôle de la toux dans la dissémination du virus de la grippe. [Auteurs]
Resumo:
Previous studies in our laboratory have shown that DBA/2 mice injected i.p. with syngeneic P815 tumor cells transfected with the HLA-CW3 gene (P815-CW3) showed a dramatic expansion of activated CD8+CD62L- T cells expressing exclusively the Vbeta10 segment. We have used this model to study the regulatory mechanisms involved in the development of the CW3-specific CD8+ response, with respect to different routes of immunization. Whereas both intradermal (i.d.) and i.p. immunization of DBA/2 mice with P815-CW3 cells led to a strong expansion of CD8+CD62L-Vbeta10+ cells, only the i.d. route allowed this expansion after immunization with P815 cells transfected with a minigene coding for the antigenic epitope CW3 170-179 (P815 miniCW3). Furthermore, depletion of CD4+ T cells in vivo completely abolished the specific response of CD8+CD62L-Vbeta10+ cells and prevented the rejection of P815-CW3 tumor cells injected i.p., whereas it did not affect CD8S+CD62L-Vbeta10+ cell expansion after i.d. immunization with either P815-CW3 or P815 miniCW3. Finally, the CW3-specific CD8+ memory response was identical whether or not CD4+ T cells were depleted during the primary response. Collectively, these results suggest that the CD8+ T cell response to P815-CW3 tumor cells injected i.p. is strictly dependent upon recognition of a helper epitope by CD4+ T cells, whereas no such requirement is observed for i.d. injection.
Resumo:
The pharmacokinetics and pharmacodynamics (waking EEG) of 75 mg trimipramine taken orally were determined in two healthy volunteers on two separate occasions, once without and once after comedication with 2 x 50 mg quinidine. Quinidine, a potent cytochrome P-450IID6 inhibitor, is used as a pharmacological tool to mimic a lack of this enzyme in man. In this study, it markedly altered the pharmacokinetics of trimipramine, almost doubling its plasma half-life and decreasing its apparent clearance and volume of distribution. These results strongly suggest that trimipramine is a substrate of cytochrome P-450IID6. These modifications of trimipramine metabolism were accompanied by measurable changes in some EEG variables, most notably with regard to the relative power in the alpha and theta bands, which showed higher and longer-lasting effects of trimipramine. Since cytochrome P-450IID6 is deficient in 5-10% of Caucasian subjects, this may have consequences in trimipramine-treated subjects, especially with regard to the effects of the drug on the EEG.
Resumo:
OBJECTIVE: To see whether a fat-rich (50%) evening meal promoted fat oxidation and a different spontaneous food intake on the following day at breakfast than a meal with a lower fat content (20%) in 10 prepubertal obese girls. RESEARCH METHODS AND PROCEDURES: The postabsorptive and postprandial (10.5 hours) energy expenditure after a low-fat (LF) (20% fat, 68% carbohydrate, 12% protein) and an isocaloric (2.1 MJ) and isoproteic high-fat (HF; 50% fat, 38% carbohydrate, 12% protein) meal were measured by indirect calorimetry. RESULTS: Fat oxidation was not significantly different after the two meals [LF, 31 +/- 9 vs. HF, 35 +/- 9 g/10.5 hours, p = not significant (NS)]. The girls oxidized 1.8 +/- 0.9 times more fat than that ingested (11.1 grams) with the LF meal vs. 0.3 +/- 0.3 times more fat than that ingested (27.1 grams) with the HF meal (p < 0.001). Carbohydrate oxidation was significantly higher after an LF than an HF meal (39 +/- 12 vs. 29 +/- 9 g/10.5 hours, p < 0,05). At breakfast, the girls spontaneously ingested a similar amount of energy (1.5 +/- 0.7 vs. 1.5 +/- 0.6 MJ, p = NS) and macronutrient proportions (fat, 23% vs. 26%, p = NS; protein, 9% vs. 10%; carbohydrate, 68% vs. 64%,) independently of their having eaten an HF or an LF dinner. DISCUSSION: An HF dinner did not stimulate fat oxidation, and no compensatory effect in spontaneous food intake was observed during breakfast the following morning. Cumulated total fat oxidation after dinner was higher than total fat ingested at dinner, but a much larger negative fat balance was observed after the LF meal. Spontaneous energy and nutrient intakes at breakfast were similar after LF and HF isocaloric, isoproteic dinners. This study points out the lack of sensitivity of short-term fat balance to subsequently readjust fat intake and emphasizes the importance of an LF meal to avoid transient positive fat imbalance.
Resumo:
The serological cross-reactivity between different recently described Chlamydia-related organisms was determined. Mouse sera exhibited a strong reactivity against autologous antigen and closely related heterologous antigen but no cross-reactivity with distantly related species. These results are important to better interpret serological studies and assess the pathogenic role of these obligate intracellular bacteria.
Resumo:
To develop a comprehensive overview of copy number aberrations (CNAs) in stage-II/III colorectal cancer (CRC), we characterized 302 tumors from the PETACC-3 clinical trial. Microsatellite-stable (MSS) samples (n = 269) had 66 minimal common CNA regions, with frequent gains on 20 q (72.5%), 7 (41.8%), 8 q (33.1%) and 13 q (51.0%) and losses on 18 (58.6%), 4 q (26%) and 21 q (21.6%). MSS tumors have significantly more CNAs than microsatellite-instable (MSI) tumors: within the MSI tumors a novel deletion of the tumor suppressor WWOX at 16 q23.1 was identified (p<0.01). Focal aberrations identified by the GISTIC method confirmed amplifications of oncogenes including EGFR, ERBB2, CCND1, MET, and MYC, and deletions of tumor suppressors including TP53, APC, and SMAD4, and gene expression was highly concordant with copy number aberration for these genes. Novel amplicons included putative oncogenes such as WNK1 and HNF4A, which also showed high concordance between copy number and expression. Survival analysis associated a specific patient segment featured by chromosome 20 q gains to an improved overall survival, which might be due to higher expression of genes such as EEF1B2 and PTK6. The CNA clustering also grouped tumors characterized by a poor prognosis BRAF-mutant-like signature derived from mRNA data from this cohort. We further revealed non-random correlation between CNAs among unlinked loci, including positive correlation between 20 q gain and 8 q gain, and 20 q gain and chromosome 18 loss, consistent with co-selection of these CNAs. These results reinforce the non-random nature of somatic CNAs in stage-II/III CRC and highlight loci and genes that may play an important role in driving the development and outcome of this disease.
Resumo:
The pharmacokinetic determinants of successful antibiotic prophylaxis of endocarditis are not precisely known. Differences in half-lives of antibiotics between animals and humans preclude extrapolation of animal results to human situations. To overcome this limitation, we have mimicked in rats the amoxicillin kinetics in humans following a 3-g oral dose (as often used for prophylaxis of endocarditis) by delivering the drug through a computerized pump. Rats with catheter-induced vegetations were challenged with either of two strains of antibiotic-tolerant viridans group streptococci. Antibiotics were given either through the pump (to simulate the whole kinetic profile during prophylaxis in humans) or as an intravenous bolus which imitated only the peak level of amoxicillin (18 mg/liter) in human serum. Prophylaxis by intravenous bolus was inoculum dependent and afforded a limited protection only in rats challenged with the minimum inoculum size infecting > or = 90% of untreated controls. In contrast, simulation of kinetics in humans significantly protected animals challenged with 10 to 100 times the inoculum of either of the test organisms infecting > or = 90% of untreated controls. Thus, simulation of the profiles of amoxicillin prophylaxis in human serum was more efficacious than mere imitation of the transient peak level in rats. This confirms previous studies suggesting that the duration for which the serum amoxicillin level remained detectable (not only the magnitude of the peak) was an important parameter in successful prophylaxis of endocarditis. The results also suggest that single-dose prophylaxis with 3 g of amoxicillin in humans might be more effective than predicted by conventional animal models in which only peak levels of antibiotic in human serum were stimulated.
Resumo:
A new, investigational, parenteral form of sparfloxacin was compared with ceftriaxone in the treatment of experimental endocarditis caused by either of three penicillin-susceptible streptococci or one penicillin-resistant streptococcus. Both drugs have prolonged half-lives in serum, allowing single daily administration to humans. Sparfloxacin had relatively low MICs (0.25 to 0.5 mg/liter) for all four organisms and was also greater than or equal to eight times more effective than the other quinolones against 21 additional streptococcal isolates recovered from patients with bacteremia. Ceftriaxone MICs were 0.032 to 0.064 mg/liter for the penicillin-susceptible strains and 2 mg/liter for the resistant isolate. Both antibiotics resulted in moderate bacterial killing in vitro. Rats with catheter-induced aortic vegetations were inoculated with 10(7) CFU of the test organisms. Antibiotic treatment was started 48 h later and lasted either 3 or 5 days. The drugs were injected at doses which mimicked the kinetics in human serum produced by one intravenous injection of 400 mg of sparfloxacin (i.e., the daily dose expected to be given to human adults) and 2 g of ceftriaxone. Both antibiotics significantly decreased the bacterial densities in the vegetations. However, sparfloxacin was slower than ceftriaxone in its ability to eradicate valvular infection caused by penicillin-susceptible bacteria. While this difference was quite marked after 3 days of therapy, it tended to vanish when treatment was prolonged to 5 days. In contrast, sparfloxacin was very effective against the penicillin-resistant isolate, an organism against which ceftriaxone therapy failed in vivo. No sparfloxacin-resistant mutant was selected during therapy. Thus, in the present experimental setting, this new, investigational, parenteral form of sparfloxacin was effective against severe infections caused by both penicillin-susceptible and penicillin-resistant streptococci.
Resumo:
BACKGROUND: Accurate catalogs of structural variants (SVs) in mammalian genomes are necessary to elucidate the potential mechanisms that drive SV formation and to assess their functional impact. Next generation sequencing methods for SV detection are an advance on array-based methods, but are almost exclusively limited to four basic types: deletions, insertions, inversions and copy number gains. RESULTS: By visual inspection of 100 Mbp of genome to which next generation sequence data from 17 inbred mouse strains had been aligned, we identify and interpret 21 paired-end mapping patterns, which we validate by PCR. These paired-end mapping patterns reveal a greater diversity and complexity in SVs than previously recognized. In addition, Sanger-based sequence analysis of 4,176 breakpoints at 261 SV sites reveal additional complexity at approximately a quarter of structural variants analyzed. We find micro-deletions and micro-insertions at SV breakpoints, ranging from 1 to 107 bp, and SNPs that extend breakpoint micro-homology and may catalyze SV formation. CONCLUSIONS: An integrative approach using experimental analyses to train computational SV calling is essential for the accurate resolution of the architecture of SVs. We find considerable complexity in SV formation; about a quarter of SVs in the mouse are composed of a complex mixture of deletion, insertion, inversion and copy number gain. Computational methods can be adapted to identify most paired-end mapping patterns.