264 resultados para bmp 2 gene


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Teleost fishes provide the first unambiguous support for ancient whole-genome duplication in an animal lineage. Studies in yeast or plants have shown that the effects of such duplications can be mediated by a complex pattern of gene retention and changes in evolutionary pressure. To explore such patterns in fishes, we have determined by phylogenetic analysis the evolutionary origin of 675 Tetraodon duplicated genes assigned to chromosomes, using additional data from other species of actinopterygian fishes. The subset of genes, which was retained in double after the genome duplication, is enriched in development, signaling, behavior, and regulation functional categories. The evolutionary rate of duplicate fish genes appears to be determined by 3 forces: 1) fish proteins evolve faster than mammalian orthologs; 2) the genes kept in double after genome duplication represent the subset under strongest purifying selection; and 3) following duplication, there is an asymmetric acceleration of evolutionary rate in one of the paralogs. These results show that similar mechanisms are at work in fishes as in yeast or plants and provide a framework for future investigation of the consequences of duplication in fishes and other animals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Association studies have revealed expression quantitative trait loci (eQTLs) for a large number of genes. However, the causative variants that regulate gene expression levels are generally unknown. We hypothesized that copy-number variation of sequence repeats contribute to the expression variation of some genes. Our laboratory has previously identified that the rare expansion of a repeat c.-174CGGGGCGGGGCG in the promoter region of the CSTB gene causes a silencing of the gene, resulting in progressive myoclonus epilepsy. Here, we genotyped the repeat length and quantified CSTB expression by quantitative real-time polymerase chain reaction in 173 lymphoblastoid cell lines (LCLs) and fibroblast samples from the GenCord collection. The majority of alleles contain either two or three copies of this repeat. Independent analysis revealed that the c.-174CGGGGCGGGGCG repeat length is strongly associated with CSTB expression (P = 3.14 × 10(-11)) in LCLs only. Examination of both genotyped and imputed single-nucleotide polymorphisms (SNPs) within 2 Mb of CSTB revealed that the dodecamer repeat represents the strongest cis-eQTL for CSTB in LCLs. We conclude that the common two or three copy variation is likely the causative cis-eQTL for CSTB expression variation. More broadly, we propose that polymorphic tandem repeats may represent the causative variation of a fraction of cis-eQTLs in the genome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background- Cardiac hypertrophy involves growth responses to a variety of stimuli triggered by increased workload. It is an independent risk factor for heart failure and sudden death. Mammalian target of rapamycin (mTOR) plays a key role in cellular growth responses by integrating growth factor and energy status signals. It is found in 2 structurally and functionally distinct multiprotein complexes called mTOR complex (mTORC) 1 and mTORC2. The role of each of these branches of mTOR signaling in the adult heart is currently unknown. Methods and Results- We generated mice with deficient myocardial mTORC1 activity by targeted ablation of raptor, which encodes an essential component of mTORC1, during adulthood. At 3 weeks after the deletion, atrial and brain natriuretic peptides and β-myosin heavy chain were strongly induced, multiple genes involved in the regulation of energy metabolism were altered, but cardiac function was normal. Function deteriorated rapidly afterward, resulting in dilated cardiomyopathy and high mortality within 6 weeks. Aortic banding-induced pathological overload resulted in severe dilated cardiomyopathy already at 1 week without a prior phase of adaptive hypertrophy. The mechanism involved a lack of adaptive cardiomyocyte growth via blunted protein synthesis capacity, as supported by reduced phosphorylation of ribosomal S6 kinase 1 and 4E-binding protein 1. In addition, reduced mitochondrial content, a shift in metabolic substrate use, and increased apoptosis and autophagy were observed. Conclusions- Our results demonstrate an essential function for mTORC1 in the heart under physiological and pathological conditions and are relevant for the understanding of disease states in which the insulin/insulin-like growth factor signaling axis is affected such as diabetes mellitus and heart failure or after cancer therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coagulation factor XIIIB polymorphism was studied by agarose isoelectric focusing and immunofixation in 592 unrelated individuals from Switzerland. The gene frequencies observed were: FXIIIB*1 = 0.769, FXIIIB*3 = 0.139, FXIIIB*2 = 0.085, FXIIIB*4 = 0.007.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Chronic activation of the nuclear factor-kappaB (NF-kappaB) in white adipose tissue leads to increased production of pro-inflammatory cytokines, which are involved in the development of insulin resistance. It is presently unknown whether peroxisome proliferator-activated receptor (PPAR) beta/delta activation prevents inflammation in adipocytes. RESEARCH DESIGN AND METHODS AND RESULTS: First, we examined whether the PPARbeta/delta agonist GW501516 prevents lipopolysaccharide (LPS)-induced cytokine production in differentiated 3T3-L1 adipocytes. Treatment with GW501516 blocked LPS-induced IL-6 expression and secretion by adipocytes and the subsequent activation of the signal transducer and activator of transcription 3 (STAT3)-Suppressor of cytokine signaling 3 (SOCS3) pathway. This effect was associated with the capacity of GW501516 to impede LPS-induced NF-kappaB activation. Second, in in vivo studies, white adipose tissue from Zucker diabetic fatty (ZDF) rats, compared with that of lean rats, showed reduced PPARbeta/delta expression and PPAR DNA-binding activity, which was accompanied by enhanced IL-6 expression and NF-kappaB DNA-binding activity. Furthermore, IL-6 expression and NF-kappaB DNA-binding activity was higher in white adipose tissue from PPARbeta/delta-null mice than in wild-type mice. Because mitogen-activated protein kinase-extracellular signal-related kinase (ERK)1/2 (MEK1/2) is involved in LPS-induced NF-kappaB activation in adipocytes, we explored whether PPARbeta/delta prevented NF-kappaB activation by inhibiting this pathway. Interestingly, GW501516 prevented ERK1/2 phosphorylation by LPS. Furthermore, white adipose tissue from animal showing constitutively increased NF-kappaB activity, such as ZDF rats and PPARbeta/delta-null mice, also showed enhanced phospho-ERK1/2 levels. CONCLUSIONS: These findings indicate that activation of PPARbeta/delta inhibits enhanced cytokine production in adipocytes by preventing NF-kappaB activation via ERK1/2, an effect that may help prevent insulin resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gene expression often cycles between active and inactive states in eukaryotes, yielding variable or noisy gene expression in the short-term, while slow epigenetic changes may lead to silencing or variegated expression. Understanding how cells control these effects will be of paramount importance to construct biological systems with predictable behaviours. Here we find that a human matrix attachment region (MAR) genetic element controls the stability and heritability of gene expression in cell populations. Mathematical modeling indicated that the MAR controls the probability of long-term transitions between active and inactive expression, thus reducing silencing effects and increasing the reactivation of silent genes. Single-cell short-terms assays revealed persistent expression and reduced expression noise in MAR-driven genes, while stochastic burst of expression occurred without this genetic element. The MAR thus confers a more deterministic behavior to an otherwise stochastic process, providing a means towards more reliable expression of engineered genetic systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PHO1 was previously identified in Arabidopsis (Arabidopsis thaliana) as a protein involved in loading inorganic phosphate (Pi) into the xylem of roots and its expression was associated with the vascular cylinder. Seven genes homologous to AtPHO1 (PpPHO1;1-PpPHO1;7) have been identified in the moss Physcomitrella patens. The corresponding proteins harbor an SPX tripartite domain in the N-terminal hydrophilic portion and an EXS domain in the conserved C-terminal hydrophobic portion, both common features of the plant PHO1 family. Northern-blot analysis showed distinct expression patterns for the PpPHO1 genes, both at the tissue level and in response to phosphate deficiency. Transgenic P. patens expressing the beta-glucuronidase reporter gene under three different PpPHO1 promoters revealed distinct expression profiles in various tissues. Expression of PpPHO1;1 and PpPHO1;7 was specifically induced by Pi starvation. P. patens homologs to the Arabidopsis PHT1, DGD2, SQD1, and APS1 genes also responded to Pi deficiency by increased mRNA levels. Morphological changes associated with Pi deficiency included elongation of caulonemata with inhibition of the formation of side branches, resulting in colonies with greater diameter, but reduced mass compared to Pi-sufficient plants. Under Pi-deficient conditions, P. patens also increased the synthesis of ribonucleases and of an acid phosphatase, and increased the ratio of sulfolipids over phospholipids. These results indicate that P. patens and higher plants share some common strategies to adapt to Pi deficiency, although morphological changes are distinct, and that the PHO1 proteins are well conserved in bryophyte despite the lack of a developed vascular system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypertension is one of the most common complex genetic disorders. We have described previously 38 single nucleotide polymorphisms (SNPs) with suggestive association with hypertension in Japanese individuals. In this study we extend our previous findings by analyzing a large sample of Japanese individuals (n=14 105) for the most associated SNPs. We also conducted replication analyses in Japanese of susceptibility loci for hypertension identified recently from genome-wide association studies of European ancestries. Association analysis revealed significant association of the ATP2B1 rs2070759 polymorphism with hypertension (P=5.3×10(-5); allelic odds ratio: 1.17 [95% CI: 1.09 to 1.26]). Additional SNPs in ATP2B1 were subsequently genotyped, and the most significant association was with rs11105378 (odds ratio: 1.31 [95% CI: 1.21 to 1.42]; P=4.1×10(-11)). Association of rs11105378 with hypertension was cross-validated by replication analysis with the Global Blood Pressure Genetics consortium data set (odds ratio: 1.13 [95% CI: 1.05 to 1.21]; P=5.9×10(-4)). Mean adjusted systolic blood pressure was highly significantly associated with the same SNP in a meta-analysis with individuals of European descent (P=1.4×10(-18)). ATP2B1 mRNA expression levels in umbilical artery smooth muscle cells were found to be significantly different among rs11105378 genotypes. Seven SNPs discovered in published genome-wide association studies were also genotyped in the Japanese population. In the combined analysis with replicated 3 genes, FGF5 rs1458038, CYP17A1, rs1004467, and CSK rs1378942, odds ratio of the highest risk group was 2.27 (95% CI: 1.65 to 3.12; P=4.6×10(-7)) compared with the lower risk group. In summary, this study confirmed common genetic variation in ATP2B1, as well as FGF5, CYP17A1, and CSK, to be associated with blood pressure levels and risk of hypertension.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS: Retroviral-mediated gene therapy has been proposed as a primary or adjuvant treatment for advanced cancer, because retroviruses selectively infect dividing cells. Efficacy of retroviral-mediated gene transfer, however, is limited in vivo. Although packaging cell lines can produce viral vectors continuously, such allo- or xenogeneic cells are normally rejected when used in vivo. Encapsulation using microporous membranes can protect the packaging cells from rejection. In this study, we used an encapsulated murine packaging cell line to test the effects of in situ delivery of a retrovirus bearing the herpes simplex virus thymidine kinase suicide gene in a rat model of orthotopic glioblastoma. MATERIALS AND METHODS: To test gene transfer in vitro, encapsulated murine psi2-VIK packaging cells were co-cultured with baby hamster kidney (BHK) cells, and the percentage of transfected BHK cells was determined. For in vivo experiments, orthotopic C6 glioblastomas were established in Wistar rats. Capsules containing psi2-VIK cells were stereotaxically implanted into these tumours and the animals were treated with ganciclovir (GCV). Tumours were harvested 14 days after initiation of GCV therapy for morphometric analysis. RESULTS: Encapsulation of psi2-VIK cells increased transfection rates of BHK target cells significantly in vitro compared to psi2-VIK conditioned medium (3 x 10(6) vs 2.3 x 10(4) cells; P<0.001). In vivo treatment with encapsulated packaging cells resulted in 3% to 5% of C6 tumour cells transduced and 45% of tumour volume replaced by necrosis after GCV (P<0.01 compared to controls). CONCLUSION: In this experimental model of glioblastoma, encapsulation of a xenogeneic packaging cell line increased half-life and transduction efficacy of retrovirus-mediated gene transfer and caused significant tumour necrosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent availability of the chicken genome sequence poses the question of whether there are human protein-coding genes conserved in chicken that are currently not included in the human gene catalog. Here, we show, using comparative gene finding followed by experimental verification of exon pairs by RT-PCR, that the addition to the multi-exonic subset of this catalog could be as little as 0.2%, suggesting that we may be closing in on the human gene set. Our protocol, however, has two shortcomings: (i) the bioinformatic screening of the predicted genes, applied to filter out false positives, cannot handle intronless genes; and (ii) the experimental verification could fail to identify expression at a specific developmental time. This highlights the importance of developing methods that could provide a reliable estimate of the number of these two types of genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transcriptional transactivational activities of the phosphoprotein cAMP-response element-binding protein (CREB) are activated by the cAMP-dependent protein kinase A signaling pathway. Dimers of CREB bind to the palindromic DNA element 5'-TGACGTCA-3' (or similar motifs) called cAMP-responsive enhancers (CREs) found in the control regions of many genes, and activate transcription in response to phosphorylation of CREB by protein kinase A. Earlier we reported on the cyclical expression of the CREB gene in the Sertoli cells of the rat testis that occurred concomitant with the FSH-induced rise in cellular cAMP levels and suggested that transcription of the CREB gene may be autoregulated by cAMP-dependent transcriptional proteins. We now report the structure of the 5'-flanking sequence of the human CREB gene containing promoter activity. The promoter has a high content of guanosines and cytosines and lacks canonical TATA and CCAAT boxes typically found in the promoters of genes in eukaryotes. Notably, the promoter contains three CREs and transcriptional activities of a promoter-luciferase reporter plasmid transfected to placental JEG-3 cells are increased 3- to 5-fold over basal activities in response to either cAMP or 12-O-tetradecanoyl phorbol-14-acetate, and give 6- to 7-fold responses when both agents are added. The CREs bind recombinant CREB and endogenous CREB or CREB-like proteins contained in placental JEG-3 cells and also confer cAMP-inducible transcriptional activation to a heterologous minimal promoter. Our studies suggest that the expression of the CREB gene is positively autoregulated in trans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T cells belong to two separate lineages based on surface expression of alpha beta or gamma delta T cell receptors (TCR). Since during thymus development TCR beta, gamma, and delta genes rearrange before alpha genes, and gamma delta cells appear earlier than alpha beta cells, it has been assumed that gamma delta cells are devoid of TCR alpha rearrangements. We show here that this is not the case, since mature adult, but not fetal, thymic gamma delta cells undergo VJ alpha rearrangements more frequently than immature alpha beta lineage thymic precursors. Sequence analysis shows VJ alpha rearrangements in gamma delta cells to be mostly (70%) nonproductive. Furthermore, VJ alpha rearrangements in gamma delta cells are transcribed normally and, as shown by analysis of TCR beta-/- mice, occur independently of productive VDJ beta rearrangements. These data are interpreted in the context of a model in which precursors of alpha beta and gamma delta cells differ in their ability to express a functional pre-TCR complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gene correction at the site of the mutation in the chromosome is the absolute way to really cure a genetic disease. The oligonucleotide (ODN)-mediated gene repair technology uses an ODN perfectly complementary to the genomic sequence except for a mismatch at the base that is mutated. The endogenous repair machinery of the targeted cell then mediates substitution of the desired base in the gene, resulting in a completely normal sequence. Theoretically, it avoids potential gene silencing or random integration associated with common viral gene augmentation approaches and allows an intact regulation of expression of the therapeutic protein. The eye is a particularly attractive target for gene repair because of its unique features (small organ, easily accessible, low diffusion into systemic circulation). Moreover therapeutic effects on visual impairment could be obtained with modest levels of repair. This chapter describes in details the optimized method to target active ODNs to the nuclei of photoreceptors in neonatal mouse using (1) an electric current application at the eye surface (saline transpalpebral iontophoresis), (2) combined with an intravitreous injection of ODNs, as well as the experimental methods for (3) the dissection of adult neural retinas, (4) their immuno-labelling, and (5) flat-mounting for direct observation of photoreceptor survival, a relevant criteria of treatment outcomes for retinal degeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasminogen (PLG) polymorphism was studied by agarose gel electrophoresis and immunofixation in 308 unrelated individuals from Switzerland. The gene frequencies observed were: PLG 1 = 0.69, PLG 2 = 0.28, and rare alleles = 0.03.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

betaTC-tet cells are conditionally immortalized pancreatic beta cells which can confer long-term correction of hyperglycemia when transplanted in syngeneic streptozocin diabetic mice. The use of these cells for control of type I diabetes in humans will require their encapsulation and transplantation in non-native sites where relative hypoxia and cytokines may threaten their survival. In this study we genetically engineered betaTC-tet cells with the anti-apoptotic gene Bcl-2 using new lentiviral vectors and showed that it protected this cell line against apoptosis induced by hypoxia, staurosporine and a mixture of cytokines (IL-1beta, IFN-gamma and TNF-alpha). We further demonstrated that Bcl-2 expression permitted growth at higher cell density and with shorter doubling time. Expression of Bcl-2, however, did not inter- fere either with the intrinsic mechanism of growth arrest present in the betaTC-tet cells or with their normal glucose dose-dependent insulin secretory activity. Furthermore, Bcl-2 expressing betaTC-tet cells retained their capacity to secrete insulin under mild hypoxia. Finally, transplantation of these cells under the kidney capsule of streptozocin diabetic C3H mice corrected hyperglycemia for several months. These results demonstrate that the murine betaTC-tet cell line can be genetically modified to improve its resistance against different stress-induced apoptosis while preserving its normal physiological function. These modified cells represent an improved source for cell transplantation therapy of type I diabetes.