251 resultados para anticancer antibiotics
Resumo:
BACKGROUND: Eight human catalytic phosphoinositide 3-kinase (PI3K) isoforms exist which are subdivided into three classes. While class I isoforms have been well-studied in cancer, little is known about the functions of class II PI3Ks. MATERIALS AND METHODS: The expression pattern and functions of the class II PI3KC2β isoform were investigated in a panel of tumour samples and cell lines. RESULTS: Overexpression of PI3KC2β was found in subsets of tumours and cell lines from acute myeloid leukemia (AML), glioblastoma multiforme (GBM), medulloblastoma (MB), neuroblastoma (NB), and small cell lung cancer (SCLC). Specific pharmacological inhibitors of PI3KC2β or RNA interference impaired proliferation of a panel of human cancer cell lines and primary cultures. Inhibition of PI3KC2β also induced apoptosis and sensitised the cancer cells to chemotherapeutic agents. CONCLUSION: Together, these data show that PI3KC2β contributes to proliferation and survival in AML, brain tumours and neuroendocrine tumours, and may represent a novel target in these malignancies.
Resumo:
SYNERCID ALONE IN A RAT MODEL OF EXPERIMENTAL ENDOCARDITIS: Trials conducted using 2 injections daily showed that animals infected with meti-R resistant Staphylococcus aureus strains sensitive to erythromycin were cured in 3 days. The same is not true for infections caused by C-MLSB-R staphylococci. The daily dose cannot be increased due to the venous toxicity of Synercid, leading to the idea of testing Synercid in combination with other antibiotics. IN VITRO STUDIES: Several antibiotics have been tested in combination with Synercid. Several beta-lactams have been shown to exhibit an additive or synergetic effect on a collection of meti-R and meti-S S. aureus strains. IN VIVO STUDIES: In animals infected with C-MLSB-R meti-R S. aureus, the combination Synercid + cefepime increases the activity of cefipime and prevents selection of beta-lactam highly resistant strains. The results obtained with the Synercid + cefpirome combination are even more eloquent. Finally, Synercid, alone or in combination with these 2 cephalosporins, does not select resistant strains.
Resumo:
Objective: Bone cements and substitutes are commonly used in surgery to deliver antibiotics locally. The objective of this study was to assess the systemic absorption and disposition of vancomycin in patients treated with active calcium sulfate bone filler and to predict systemic concentrations under various conditions. Method: 277 blood samples were taken from 42 patients receiving vancomycin in bone cement during surgery. Blood samples were collected from 3h to 10 days after implantation. Vancomycin was measured by immunoenzymatic assay. Population pharmacokinetic (PK) analysis was performed using NONMEM to assess average estimates and variability of PK parameters. Based on the final model, simulations with various doses and renal function levels were performed. Results: The patients were 64 ± 20 years old, their body weight was 81 ± 22 kg and Cockcroft-Gault creatinine clearance (CLcr) 98 ± 55 mL/min. Vancomycin doses ranged from 200 mg to 6000 mg and implantation sites were hip (n=16), tibia (10) or others (16). Concentration profiles remained low and consistent with absorption rate-limited first-order release, while showing prominent variability. Mean clearance (CL) was 3.87 L/h (CV 35%), absorption rate constant (ka) 0.004 h-1 (66%) and volume of distribution (V) 9.5 L. Simulations with up to 8000 mg vancomycin implant showed systemic concentrations exceeding 20 mg/L for 3.5 days in 43% of the patients with CLcr 15 mL/min, whereas 7% of the patients with normal renal function had a concentration above 20 mg/L for 1.1 days. Subtherapeutic concentrations (0.4-4 mg/L) were predicted during a median of 22 days in patients with normal renal function and 4000 mg vancomycin implant, with limited influence of dose or renal function. Conclusion: Vancomycin-laden calcium sulfate implant does not raise toxicity concern. Selection of resistant bacteria, such as Enterococcus and Staphylococcus species, might however be a concern, as simulations show persistent subtherapeutic systemic concentrations during 3 to 4 weeks in these patients.
Resumo:
Methicillin-resistant Staphylococcus aureus (MRSA) have developed resistance to virtually all non-experimental antibiotics. They are intrinsically resistant to beta-lactams by virtue of newly acquired low-affinity penicillin-binding protein 2A (PBP2A). Because PBP2A can build the wall when other PBPs are blocked by beta-lactams, designing beta-lactams capable of blocking this additional target should help solve the issue. Older molecules including penicillin G, amoxicillin and ampicillin had relatively good PBP2A affinities, and successfully treated experimental endocarditis caused by MRSA, provided that the bacterial penicillinase could be inhibited. Newer anti-PBP2A beta-lactams with over 10-fold greater PBP2A affinities and low minimal inhibitory concentrations were developed, primarily in the cephem and carbapenem classes. They are also very resistant to penicillinase. Most have demonstrated anti-MRSA activity in animal models of infection, and two--the carbapenem CS-023 and the cephalosporin ceftopibrole medocaril--have proceeded to Phase II and Phase III clinical evaluation. Thus, clinically useful anti-MRSA beta-lactams are imminent.
Resumo:
Deregulation of the ubiquitin/proteasome system has been implicated in the pathogenesis of many human diseases, including cancer. Ubiquitin-specific proteases (USP) are cysteine proteases involved in the deubiquitination of protein substrates. Functional connections between USP7 and essential viral proteins and oncogenic pathways, such as the p53/Mdm2 and phosphatidylinositol 3-kinase/protein kinase B networks, strongly suggest that the targeting of USP7 with small-molecule inhibitors may be useful for the treatment of cancers and viral diseases. Using high-throughput screening, we have discovered HBX 41,108, a small-molecule compound that inhibits USP7 deubiquitinating activity with an IC(50) in the submicromolar range. Kinetics data indicate an uncompetitive reversible inhibition mechanism. HBX 41,108 was shown to affect USP7-mediated p53 deubiquitination in vitro and in cells. As RNA interference-mediated USP7 silencing in cancer cells, HBX 41,108 treatment stabilized p53, activated the transcription of a p53 target gene without inducing genotoxic stress, and inhibited cancer cell growth. Finally, HBX 41,108 induced p53-dependent apoptosis as shown in p53 wild-type and null isogenic cancer cell lines. We thus report the identification of the first lead-like inhibitor against USP7, providing a structural basis for the development of new anticancer drugs.
Resumo:
In breast cancer, brain metastases are often seen as late complications of recurrent disease and represent a particularly serious condition, since there are limited therapeutic options and patients have an unfavorable prognosis. The frequency of brain metastases in breast cancer is currently on the rise. This might be due to the fact that adjuvant chemotherapeutic and targeted anticancer drugs, while they effectively control disease progression in the periphery, they only poorly cross the blood-brain barrier and do not reach effectively cancer cells disseminated in the brain. It is therefore of fundamental clinical relevance to investigate mechanisms involved in breast cancer metastasis to the brain. To date experimental models of breast cancer metastasis to the brain described in literature are based on the direct intracarotid or intracardiac injection of breast cancer cells. We recently established a brain metastasis breast cancer model in immunocompetent mice based on the orthotopic injection of 4T1 murine breast carcinoma cells in the mammary gland of syngeneic BALB/c mice. 4T1-derived tumors recapitulate the main steps of human breast cancer progression, including epithelial-to-mesenchymal transition, local invasion and metastatic spreading to lung and lymph nodes. 4T1 cells were engineered to stably express firefly Luciferase allowing noninvasive in vivo and ex vivo monitoring of tumor progression and metastatic spreading to target organs. Bioluminescence imaging revealed the appearance of spontaneous lesions to the lung and lymph nodes and, at a much lower frequency, to the brain. Brain metastases were confirmed by macroscopic and microscopic evaluation of the brains at necropsy. We then isolated brain metastatic cells, re-injected them orthotopically in new mice and isolated again lines from brain metastases. After two rounds of selection we obtained lines metastasizing to the brain with 100% penetrance (named 4T1-BM2 for Brain Metastasis, 2nd generation) compared to lines derived after two rounds of in vivo growth from primary tumors (4T1-T2) or from lung metastases (4T1-LM2). We are currently performing experiments to unravel differences in cell proliferation, adhesion, migration, invasion and survival of the 4T1-BM2 line relative to the 4T1-T2 and 4T1-LM2 lines. Initial results indicate that 4T1-BM2 cells are not more invasive or more proliferative in vitro and do not show a more mesenchymal phenotype. Our syngeneic (BALB/c) model of spontaneous breast carcinoma metastasis to the brain is a unique and clinically relevant model to unravel the mechanisms of metastatic breast cancer colonization of the brain. Genes identified in this model represent potentially clinically relevant therapeutic targets for the prevention and the treatment of brain metastases in breast cancer patients.
Resumo:
Paclitaxel (Tx)-loaded anti-HER2 immunonanoparticles (NPs-Tx-HER) were prepared by the covalent coupling of humanized monoclonal anti-HER2 antibodies (trastuzumab, Herceptin) to Tx-loaded poly (dl-lactic acid) nanoparticles (NPs-Tx) for the active targeting of tumor cells that overexpress HER2 receptors. The physico-chemical properties of NPs-Tx-HER were compared to unloaded immunonanoparticles (NPs-HER) to assess the influence of the drug on anti-HER2 coupling to the NP surface. The immunoreactivity of sulfo-MBS activated anti-HER2 mAbs and the in vitro efficacy of NPs-Tx-HER were tested on SKOV-3 ovarian cancer cells that overexpress HER2 antigens. Tx-loaded nanoparticles (NPs-Tx) obtained by a salting-out method had a size of 171+/-22 nm (P.I.=0.1) and an encapsulation efficiency of about of 78+/-10%, which corresponded to a drug loading of 7.8+/-0.8% (w/w). NPs-Tx were then thiolated and conjugated to activated anti-HER2 mAbs to obtain immunonanoparticles of 237+/-43 nm (P.I.=0.2). The influence of the activation step on the immunoreactivity of the mAbs was tested on SKOV-3 cells using 125I-radiolabeled mAbs, and the activity of the anti-HER2 mAbs was minimally affected after sulfo-MBS functionalization. Approximately 270 molecules of anti-HER2 mAbs were bound per nanoparticle. NPs-Tx-HER exhibited a zeta potential of 0.2+/-0.1 mV. The physico-chemical properties of the Tx-loaded immunonanoparticles were very similar to unloaded immunonanoparticles, suggesting that the encapsulation of the drug did not influence the coupling of the mAbs to the NPs. No drug loss was observed during the preparation process. DSC analysis showed that encapsulated Tx is in an amorphous or disordered-crystalline phase. These results suggest that Tx is entrapped in the polymeric matrix and not adsorbed to the surface of the NPs. In vitro studies on SKOV-3 ovarian cancer cells demonstrated the greater cytotoxic effect of NPs-Tx-HER compared to other Tx formulations. The results showed that at 1 ng Tx/ml, the viability of cells incubated with drug encapsulated in NP-Tx-HER was lower (77.32+/-5.48%) than the viability of cells incubated in NPs-Tx (97.4+/-12%), immunonanoparticles coated with Mabthera, as irrelevant mAb (NPs-Tx-RIT) (93.8+/-12%) or free drug (92.3+/-9.3%).
Resumo:
Structural and regulatory genes involved in the synthesis of antimicrobial metabolites are essential for the biocontrol activity of fluorescent pseudomonads and, in principle, amenable to genetic engineering for strain improvement. An eventual large-scale release of such bacteria raises the question of whether such genes also contribute to the persistence and dissemination of the bacteria in soil ecosystems. Pseudomonas fluorescens wild-type strain CHA0 protects plants against a variety of fungal diseases and produces several antimicrobial metabolites. The regulatory gene gacA globally controls antibiotic production and is crucial for disease suppression in CHA0. This gene also regulates the production of extracellular protease and phospholipase. The contribution of gacA to survival and vertical translocation of CHA0 in soil microcosms of increasing complexity was studied in coinoculation experiments with the wild type and a gacA mutant which lacks antibiotics and some exoenzymes. Both strains were marked with spontaneous resistance to rifampin. In a closed system with sterile soil, strain CHA0 and the gacA mutant multiplied for several weeks, whereas these strains declined exponentially in nonsterile soil of different Swiss origins. The gacA mutant was less persistent in nonrhizosphere raw soil than was the wild type, but no competitive disadvantage when colonizing the rhizosphere and roots of wheat was found in the particular soil type and during the period studied. Vertical translocation was assessed after strains had been applied to undisturbed, long (60-cm) or short (20-cm) soil columns, both planted with wheat. A smaller number of cells of the gacA mutant than of the wild type were detected in the percolated water and in different depths of the soil column. Single-strain inoculation gave similar results in all microcosms tested. We conclude that mutation in a single regulatory gene involved in antibiotic and exoenzyme synthesis can affect the survival of P. fluorescens more profoundly in unplanted soil than in the rhizosphere.
Resumo:
Three pyrenyl-arene ruthenium complexes (M(1)-M(3)) of the general formula [Ru(η(6)-arene-pyrenyl)Cl(2)(pta)] (pta = 1,3,5-triaza-7-phosphaadamantane) have been synthesised and characterised. Prior to the coordination to ruthenium, pyrene was connected to the arene ligand via an alkane chain containing different functional groups: ester (L(1)), ether (L(2)) and amide (L(3)), respectively. Furthermore, the pyrenyl moieties of the M(n) complexes were encapsulated within the hydrophobic cavity of the water soluble metalla-cage, [Ru(6)(η(6)-p-cymene)(6)(tpt)(2)(donq)(3)](6+) (tpt = 2,4,6-tri-(pyridin-4-yl)-1,3,5-triazine; donq = 5,8-dioxydo-1,4-naphthoquinonato), while the arene ruthenium end was pointing out of the cage, thus giving rise to the corresponding host-guest systems [M(n)⊂Ru(6)(η(6)-p-cymene)(6)(tpt)(2)(donq)(3)](6+) ([M(n)⊂cage](6+)). The antitumor activity of the pyrenyl-arene ruthenium complexes (M(n)) and the corresponding host-guest systems [M(n)⊂cage][CF(3)SO(3)](6) were evaluated in vitro in different types of human cancer cell lines (A549, A2780, A2780cisR, Me300 and HeLa). Complex M(2), which contains an ether group within the alkane chain, demonstrated at least a 10 times higher cytotoxicity than the reference compound [Ru(η(6)-p-cymene)Cl(2)(pta)] (RAPTA-C). All host-guest systems [M(n)⊂cage](6+) showed good anticancer activity with IC(50) values ranging from 2 to 8 μM after 72 h exposure. The fluorescence of the pyrenyl moiety allowed the monitoring of the cellular uptake and revealed an increase of uptake by a factor two of the M(2) complex when encapsulated in the metalla-cage [Ru(6)(η(6)-p-cymene)(6)(tpt)(2)(donq)(3)](6+).
Resumo:
The therapeutic efficacy of anticancer chemotherapies may depend on dendritic cells (DCs), which present antigens from dying cancer cells to prime tumor-specific interferon-gamma (IFN-gamma)-producing T lymphocytes. Here we show that dying tumor cells release ATP, which then acts on P2X(7) purinergic receptors from DCs and triggers the NOD-like receptor family, pyrin domain containing-3 protein (NLRP3)-dependent caspase-1 activation complex ('inflammasome'), allowing for the secretion of interleukin-1beta (IL-1beta). The priming of IFN-gamma-producing CD8+ T cells by dying tumor cells fails in the absence of a functional IL-1 receptor 1 and in Nlpr3-deficient (Nlrp3(-/-)) or caspase-1-deficient (Casp-1(-/-)) mice unless exogenous IL-1beta is provided. Accordingly, anticancer chemotherapy turned out to be inefficient against tumors established in purinergic receptor P2rx7(-/-) or Nlrp3(-/-) or Casp1(-/-) hosts. Anthracycline-treated individuals with breast cancer carrying a loss-of-function allele of P2RX7 developed metastatic disease more rapidly than individuals bearing the normal allele. These results indicate that the NLRP3 inflammasome links the innate and adaptive immune responses against dying tumor cells.