260 resultados para TISSUE-SECTIONS
Resumo:
Promazine hydrochloride was injected accidentally in the antecubital artery of a 42-year-old woman, resulting in severe ischemia of the second and third fingers of her right hand which lasted for four days before she was hospitalized. Vasodilation by combining axillary plexus block and intravenous sodium nitroprusside did not improve ischemia and local thrombolysis was performed using recombinant tissue-type plasminogen activator (50 mg over 8 hours), resulting in normalization of digital pressure in one of the two affected fingers. The outcome was favourable and amputation could be avoided.
Resumo:
Complications related to the neck-stem junction of modular stems used for total hip arthroplasty (THA) are generating increasing concern. A 74-year-old male had increasing pain and a cutaneous reaction around the scar 1 year after THA with a modular neck-stem. Imaging revealed osteolysis of the calcar and a pseudo-tumour adjacent to the neck-stem junction. Serum cobalt levels were elevated. Revision surgery to exchange the stem and liner and to resect the pseudo-tumour was performed. Analysis of the stem by scanning electron microscopy and by energy dispersive X-ray and white light interferometry showed fretting corrosion at the neck-stem junction contrasting with minimal changes at the head-neck junction. Thus, despite dry assembly of the neck and stem on the back table at primary THA, full neck-stem contact was not achieved, and the resulting micromotion at the interface led to fretting corrosion. This case highlights the mechanism of fretting corrosion at the neck-stem interface responsible for adverse local tissue reactions. Clinical and radiological follow-up is mandatory in patients with dual-modular stems.
Resumo:
We propose a finite element approximation of a system of partial differential equations describing the coupling between the propagation of electrical potential and large deformations of the cardiac tissue. The underlying mathematical model is based on the active strain assumption, in which it is assumed that a multiplicative decomposition of the deformation tensor into a passive and active part holds, the latter carrying the information of the electrical potential propagation and anisotropy of the cardiac tissue into the equations of either incompressible or compressible nonlinear elasticity, governing the mechanical response of the biological material. In addition, by changing from an Eulerian to a Lagrangian configuration, the bidomain or monodomain equations modeling the evolution of the electrical propagation exhibit a nonlinear diffusion term. Piecewise quadratic finite elements are employed to approximate the displacements field, whereas for pressure, electrical potentials and ionic variables are approximated by piecewise linear elements. Various numerical tests performed with a parallel finite element code illustrate that the proposed model can capture some important features of the electromechanical coupling, and show that our numerical scheme is efficient and accurate.
Resumo:
Résumé L'eau est souvent considérée comme une substance ordinaire puisque elle est très commune dans la nature. En fait elle est la plus remarquable de toutes les substances. Sans l'eau la vie sur la terre n'existerait pas. L'eau représente le composant majeur de la cellule vivante, formant typiquement 70 à 95% de la masse cellulaire et elle fournit un environnement à d'innombrables organismes puisque elle couvre 75% de la surface de terre. L'eau est une molécule simple faite de deux atomes d'hydrogène et un atome d'oxygène. Sa petite taille semble en contradiction avec la subtilité de ses propriétés physiques et chimiques. Parmi celles-là, le fait que, au point triple, l'eau liquide est plus dense que la glace est particulièrement remarquable. Malgré son importance particulière dans les sciences de la vie, l'eau est systématiquement éliminée des spécimens biologiques examinés par la microscopie électronique. La raison en est que le haut vide du microscope électronique exige que le spécimen biologique soit solide. Pendant 50 ans la science de la microscopie électronique a adressé ce problème résultant en ce moment en des nombreuses techniques de préparation dont l'usage est courrant. Typiquement ces techniques consistent à fixer l'échantillon (chimiquement ou par congélation), remplacer son contenu d'eau par un plastique doux qui est transformé à un bloc rigide par polymérisation. Le bloc du spécimen est coupé en sections minces (denviron 50 nm) avec un ultramicrotome à température ambiante. En général, ces techniques introduisent plusieurs artefacts, principalement dû à l'enlèvement d'eau. Afin d'éviter ces artefacts, le spécimen peut être congelé, coupé et observé à basse température. Cependant, l'eau liquide cristallise lors de la congélation, résultant en une importante détérioration. Idéalement, l'eau liquide est solidifiée dans un état vitreux. La vitrification consiste à refroidir l'eau si rapidement que les cristaux de glace n'ont pas de temps de se former. Une percée a eu lieu quand la vitrification d'eau pure a été découverte expérimentalement. Cette découverte a ouvert la voie à la cryo-microscopie des suspensions biologiques en film mince vitrifié. Nous avons travaillé pour étendre la technique aux spécimens épais. Pour ce faire les échantillons biologiques doivent être vitrifiés, cryo-coupées en sections vitreuse et observées dans une cryo-microscope électronique. Cette technique, appelée la cryo- microscopie électronique des sections vitrifiées (CEMOVIS), est maintenant considérée comme étant la meilleure façon de conserver l'ultrastructure de tissus et cellules biologiques dans un état très proche de l'état natif. Récemment, cette technique est devenue une méthode pratique fournissant des résultats excellents. Elle a cependant, des limitations importantes, la plus importante d'entre elles est certainement dû aux artefacts de la coupe. Ces artefacts sont la conséquence de la nature du matériel vitreux et le fait que les sections vitreuses ne peuvent pas flotter sur un liquide comme c'est le cas pour les sections en plastique coupées à température ambiante. Le but de ce travail a été d'améliorer notre compréhension du processus de la coupe et des artefacts de la coupe. Nous avons ainsi trouvé des conditions optimales pour minimiser ou empêcher ces artefacts. Un modèle amélioré du processus de coupe et une redéfinitions des artefacts de coupe sont proposés. Les résultats obtenus sous ces conditions sont présentés et comparés aux résultats obtenus avec les méthodes conventionnelles. Abstract Water is often considered to be an ordinary substance since it is transparent, odourless, tasteless and it is very common in nature. As a matter of fact it can be argued that it is the most remarkable of all substances. Without water life on Earth would not exist. Water is the major component of cells, typically forming 70 to 95% of cellular mass and it provides an environment for innumerable organisms to live in, since it covers 75% of Earth surface. Water is a simple molecule made of two hydrogen atoms and one oxygen atom, H2O. The small size of the molecule stands in contrast with its unique physical and chemical properties. Among those the fact that, at the triple point, liquid water is denser than ice is especially remarkable. Despite its special importance in life science, water is systematically removed from biological specimens investigated by electron microscopy. This is because the high vacuum of the electron microscope requires that the biological specimen is observed in dry conditions. For 50 years the science of electron microscopy has addressed this problem resulting in numerous preparation techniques, presently in routine use. Typically these techniques consist in fixing the sample (chemically or by freezing), replacing its water by plastic which is transformed into rigid block by polymerisation. The block is then cut into thin sections (c. 50 nm) with an ultra-microtome at room temperature. Usually, these techniques introduce several artefacts, most of them due to water removal. In order to avoid these artefacts, the specimen can be frozen, cut and observed at low temperature. However, liquid water crystallizes into ice upon freezing, thus causing severe damage. Ideally, liquid water is solidified into a vitreous state. Vitrification consists in solidifying water so rapidly that ice crystals have no time to form. A breakthrough took place when vitrification of pure water was discovered. Since this discovery, the thin film vitrification method is used with success for the observation of biological suspensions of. small particles. Our work was to extend the method to bulk biological samples that have to be vitrified, cryosectioned into vitreous sections and observed in cryo-electron microscope. This technique is called cryo-electron microscopy of vitreous sections (CEMOVIS). It is now believed to be the best way to preserve the ultrastructure of biological tissues and cells very close to the native state for electron microscopic observation. Since recently, CEMOVIS has become a practical method achieving excellent results. It has, however, some sever limitations, the most important of them certainly being due to cutting artefacts. They are the consequence of the nature of vitreous material and the fact that vitreous sections cannot be floated on a liquid as is the case for plastic sections cut at room temperature. The aim of the present work has been to improve our understanding of the cutting process and of cutting artefacts, thus finding optimal conditions to minimise or prevent these artefacts. An improved model of the cutting process and redefinitions of cutting artefacts are proposed. Results obtained with CEMOVIS under these conditions are presented and compared with results obtained with conventional methods.
Resumo:
BACKGROUND: Myeloid cells are key players in the recognition and response of the host against invading viruses. Paradoxically, upon HIV-1 infection, myeloid cells might also promote viral pathogenesis through trans-infection, a mechanism that promotes HIV-1 transmission to target cells via viral capture and storage. The receptor Siglec-1 (CD169) potently enhances HIV-1 trans-infection and is regulated by immune activating signals present throughout the course of HIV-1 infection, such as interferon α (IFNα). RESULTS: Here we show that IFNα-activated dendritic cells, monocytes and macrophages have an enhanced ability to capture and trans-infect HIV-1 via Siglec-1 recognition of viral membrane gangliosides. Monocytes from untreated HIV-1-infected individuals trans-infect HIV-1 via Siglec-1, but this capacity diminishes after effective antiretroviral treatment. Furthermore, Siglec-1 is expressed on myeloid cells residing in lymphoid tissues, where it can mediate viral trans-infection. CONCLUSIONS: Siglec-1 on myeloid cells could fuel novel CD4(+) T-cell infections and contribute to HIV-1 dissemination in vivo.
Resumo:
Lentivirus-based gene delivery vectors carrying multiple gene cassettes are powerful tools in gene transfer studies and gene therapy, allowing coexpression of multiple therapeutic factors and, if desired, fluorescent reporters. Current strategies to express transgenes and microRNA (miRNA) clusters from a single vector have certain limitations that affect transgene expression levels and/or vector titers. In this study, we describe a novel vector design that facilitates combined expression of therapeutic RNA- and protein-based antiangiogenic factors as well as a fluorescent reporter from back-to-back RNApolII-driven expression cassettes. This configuration allows effective production of intron-embedded miRNAs that are released upon transduction of target cells. Exploiting such multigenic lentiviral vectors, we demonstrate robust miRNA-directed downregulation of vascular endothelial growth factor (VEGF) expression, leading to reduced angiogenesis, and parallel impairment of angiogenic pathways by codelivering the gene encoding pigment epithelium-derived factor (PEDF). Notably, subretinal injections of lentiviral vectors reveal efficient retinal pigment epithelium-specific gene expression driven by the VMD2 promoter, verifying that multigenic lentiviral vectors can be produced with high titers sufficient for in vivo applications. Altogether, our results suggest the potential applicability of combined miRNA- and protein-encoding lentiviral vectors in antiangiogenic gene therapy, including new combination therapies for amelioration of age-related macular degeneration.
Resumo:
Protein-coding genes evolve at different rates, and the influence of different parameters, from gene size to expression level, has been extensively studied. While in yeast gene expression level is the major causal factor of gene evolutionary rate, the situation is more complex in animals. Here we investigate these relations further, especially taking in account gene expression in different organs as well as indirect correlations between parameters. We used RNA-seq data from two large datasets, covering 22 mouse tissues and 27 human tissues. Over all tissues, evolutionary rate only correlates weakly with levels and breadth of expression. The strongest explanatory factors of purifying selection are GC content, expression in many developmental stages, and expression in brain tissues. While the main component of evolutionary rate is purifying selection, we also find tissue-specific patterns for sites under neutral evolution and for positive selection. We observe fast evolution of genes expressed in testis, but also in other tissues, notably liver, which are explained by weak purifying selection rather than by positive selection.
Resumo:
Segment poses and joint kinematics estimated from skin markers are highly affected by soft tissue artifact (STA) and its rigid motion component (STARM). While four marker-clusters could decrease the STA non-rigid motion during gait activity, other data, such as marker location or STARM patterns, would be crucial to compensate for STA in clinical gait analysis. The present study proposed 1) to devise a comprehensive average map illustrating the spatial distribution of STA for the lower limb during treadmill gait and 2) to analyze STARM from four marker-clusters assigned to areas extracted from spatial distribution. All experiments were realized using a stereophotogrammetric system to track the skin markers and a bi-plane fluoroscopic system to track the knee prosthesis. Computation of the spatial distribution of STA was realized on 19 subjects using 80 markers apposed on the lower limb. Three different areas were extracted from the distribution map of the thigh. The marker displacement reached a maximum of 24.9mm and 15.3mm in the proximal areas of thigh and shank, respectively. STARM was larger on thigh than the shank with RMS error in cluster orientations between 1.2° and 8.1°. The translation RMS errors were also large (3.0mm to 16.2mm). No marker-cluster correctly compensated for STARM. However, the coefficient of multiple correlations exhibited excellent scores between skin and bone kinematics, as well as for STARM between subjects. These correlations highlight dependencies between STARM and the kinematic components. This study provides new insights for modeling STARM for gait activity.
Resumo:
Obesity is associated with chronic food intake disorders and binge eating. Food intake relies on the interaction between homeostatic regulation and hedonic signals among which, olfaction is a major sensory determinant. However, its potential modulation at the peripheral level by a chronic energy imbalance associated to obese status remains a matter of debate. We further investigated the olfactory function in a rodent model relevant to the situation encountered in obese humans, where genetic susceptibility is juxtaposed on chronic eating disorders. Using several olfactory-driven tests, we compared the behaviors of obesity-prone Sprague-Dawley rats (OP) fed with a high-fat/high-sugar diet with those of obese-resistant ones fed with normal chow. In OP rats, we reported 1) decreased odor threshold, but 2) poor olfactory performances, associated with learning/memory deficits, 3) decreased influence of fasting, and 4) impaired insulin control on food seeking behavior. Associated with these behavioral modifications, we found a modulation of metabolism-related factors implicated in 1) electrical olfactory signal regulation (insulin receptor), 2) cellular dynamics (glucorticoids receptors, pro- and antiapoptotic factors), and 3) homeostasis of the olfactory mucosa and bulb (monocarboxylate and glucose transporters). Such impairments might participate to the perturbed daily food intake pattern that we observed in obese animals.
Resumo:
We compared different approaches to analyze running mechanics alterations during repeated treadmill sprints. Thirteen active male athletes performed five 5-second sprints with 25 seconds of recovery on an instrumented treadmill. This approach allowed continuous measurement of running kinetics/kinematics and calculation of vertical and leg stiffness variables that were subsequently averaged over 3 distinct sections of the 5-second sprint (steps 2-5, 7-10, and 12-15) and for all steps (steps 2-15). Independently from the analyzed section, propulsive power and step frequency decreased with fatigue, while contact time and step length increased (P < .05). Except for step frequency, all mechanical variables varied (P < .05) across sprint sections. The only parameters that highly depend on running velocity (propulsive power and vertical stiffness) showed a significant interaction (P < .05) between the analyzed sections, with smaller magnitude of fatigue-induced change observed for steps 2-5. Considering all steps or only a few steps during early, middle, or late phases of 5-second sprints provides similar mechanical outcomes during repeated treadmill sprinting, although acceleration induces noticeable differences between the sections studied. Furthermore, quantifying mechanical alterations from the early acceleration phase may not be readily detectable, and is not recommended.
Resumo:
BACKGROUND: An inverse correlation between expression of the aldehyde dehydrogenase 1 subfamily A2 (ALDH1A2) and gene promoter methylation has been identified as a common feature of oropharyngeal squamous cell carcinoma (OPSCC). Moreover, low ALDH1A2 expression was associated with an unfavorable prognosis of OPSCC patients, however the causal link between reduced ALDH1A2 function and treatment failure has not been addressed so far. METHODS: Serial sections from tissue microarrays of patients with primary OPSCC (n = 101) were stained by immunohistochemistry for key regulators of retinoic acid (RA) signaling, including ALDH1A2. Survival with respect to these regulators was investigated by univariate Kaplan-Meier analysis and multivariate Cox regression proportional hazard models. The impact of ALDH1A2-RAR signaling on tumor-relevant processes was addressed in established tumor cell lines and in an orthotopic mouse xenograft model. RESULTS: Immunohistochemical analysis showed an improved prognosis of ALDH1A2(high) OPSCC only in the presence of CRABP2, an intracellular RA transporter. Moreover, an ALDH1A2(high)CRABP2(high) staining pattern served as an independent predictor for progression-free (HR: 0.395, p = 0.007) and overall survival (HR: 0.303, p = 0.002), suggesting a critical impact of RA metabolism and signaling on clinical outcome. Functionally, ALDH1A2 expression and activity in tumor cell lines were related to RA levels. While administration of retinoids inhibited clonogenic growth and proliferation, the pharmacological inhibition of ALDH1A2-RAR signaling resulted in loss of cell-cell adhesion and a mesenchymal-like phenotype. Xenograft tumors derived from FaDu cells with stable silencing of ALDH1A2 and primary tumors from OPSCC patients with low ALDH1A2 expression exhibited a mesenchymal-like phenotype characterized by vimentin expression. CONCLUSIONS: This study has unraveled a critical role of ALDH1A2-RAR signaling in the pathogenesis of head and neck cancer and our data implicate that patients with ALDH1A2(low) tumors might benefit from adjuvant treatment with retinoids.
Resumo:
We report two unrelated patients with a multisystem disease involving liver, eye, immune system, connective tissue, and bone, caused by biallelic mutations in the neuroblastoma amplified sequence (NBAS) gene. Both presented as infants with recurrent episodes triggered by fever with vomiting, dehydration, and elevated transaminases. They had frequent infections, hypogammaglobulinemia, reduced natural killer cells, and the Pelger-Huët anomaly of their granulocytes. Their facial features were similar with a pointed chin and proptosis; loose skin and reduced subcutaneous fat gave them a progeroid appearance. Skeletal features included short stature, slender bones, epiphyseal dysplasia with multiple phalangeal pseudo-epiphyses, and small C1-C2 vertebrae causing cervical instability and myelopathy. Retinal dystrophy and optic atrophy were present in one patient. NBAS is a component of the synthaxin-18 complex and is involved in nonsense-mediated mRNA decay control. Putative loss-of-function mutations in NBAS are already known to cause disease in humans. A specific founder mutation has been associated with short stature, optic nerve atrophy and Pelger-Huët anomaly of granulocytes (SOPH) in the Siberian Yakut population. A more recent report associates NBAS mutations with recurrent acute liver failure in infancy in a group of patients of European descent. Our observations indicate that the phenotypic spectrum of NBAS deficiency is wider than previously known and includes skeletal, hepatic, metabolic, and immunologic aspects. Early recognition of the skeletal phenotype is important for preventive management of cervical instability. © 2015 Wiley Periodicals, Inc.
Resumo:
BACKGROUND/AIMS: The purpose of the present study was to compare the direct renin inhibitor aliskiren to the diuretic hydrochlorothiazide (HCTZ) in their ability to modulate renal tissue oxygenation in hypertensive patients. METHODS: 24 patients were enrolled in this randomized prospective study and 20 completed the protocol. Patients were randomly assigned to receive either aliskiren 150-300 mg/d or HCTZ 12.5 - 25 mg/d for 8 weeks. Renal oxygenation was measured by BOLD-MRI at weeks 0 and 8. BOLD-MRI was also performed before and after an i.v. injection of 20 mg furosemide at week 0 and at week 8. BOLD-MRI data were analyzed by measuring the oxygenation in 12 computed layers of the kidney enabling to asses renal oxygenation according to the depth within the kidney and by the classical method of regions of interest (ROI). RESULTS: The classical ROI analysis of the data showed no difference between the groups at week 8. The analysis of renal oxygenation according to the 12 layers method shows no significant difference between aliskiren and HCTZ at week 8 before administration of furosemide. However, within group analyses show that aliskiren slightly but not significantly increased oxygenation in the cortex and decreased medullary oxygenation whereas HCTZ induced a significant overall decrease in renal tissue oxygenation. With the same method of analysis we observed that the response to furosemide was unchanged in the HCTZ group at week 8 but was characterized by an increase in both cortical and medullary oxygenation in aliskiren-treated patients. Patients responding to aliskiren and HCTZ by a fall in systolic blood pressure of >10 mmHg improved their renal tissue oxygenation when compared to non-responders. CONCLUSION: With the classical method of evaluation using regions no difference were found between aliskiren and HCTZ on renal tissue oxygenation after 8 weeks. In contrast, with our new method that takes into account the entire kidney, within group analyses show that aliskiren slightly increases cortical and medullary renal tissue oxygenation in hypertensive patients whereas HCTZ decreases significantly renal oxygenation at trough.