265 resultados para Ring-bone.
Resumo:
This study aimed to develop a hip screening tool that combines relevant clinical risk factors (CRFs) and quantitative ultrasound (QUS) at the heel to determine the 10-yr probability of hip fractures in elderly women. The EPISEM database, comprised of approximately 13,000 women 70 yr of age, was derived from two population-based white European cohorts in France and Switzerland. All women had baseline data on CRFs and a baseline measurement of the stiffness index (SI) derived from QUS at the heel. Women were followed prospectively to identify incident fractures. Multivariate analysis was performed to determine the CRFs that contributed significantly to hip fracture risk, and these were used to generate a CRF score. Gradients of risk (GR; RR/SD change) and areas under receiver operating characteristic curves (AUC) were calculated for the CRF score, SI, and a score combining both. The 10-yr probability of hip fracture was computed for the combined model. Three hundred seven hip fractures were observed over a mean follow-up of 3.2 yr. In addition to SI, significant CRFs for hip fracture were body mass index (BMI), history of fracture, an impaired chair test, history of a recent fall, current cigarette smoking, and diabetes mellitus. The average GR for hip fracture was 2.10 per SD with the combined SI + CRF score compared with a GR of 1.77 with SI alone and of 1.52 with the CRF score alone. Thus, the use of CRFs enhanced the predictive value of SI alone. For example, in a woman 80 yr of age, the presence of two to four CRFs increased the probability of hip fracture from 16.9% to 26.6% and from 52.6% to 70.5% for SI Z-scores of +2 and -3, respectively. The combined use of CRFs and QUS SI is a promising tool to assess hip fracture probability in elderly women, especially when access to DXA is limited.
Resumo:
Cancer-related inflammation has emerged in recent years as a major event contributing to tumor angiogenesis, tumor progression and metastasis formation. Bone marrow-derived and inflammatory cells promote tumor angiogenesis by providing endothelial progenitor cells that differentiate into mature endothelial cells, and by secreting pro-angiogenic factors and remodeling the extracellular matrix to stimulate angiogenesis though paracrine mechanisms. Several bone marrow-derived myelonomocytic cells, including monocytes and macrophages, have been identified and characterized by several laboratories in recent years. While the central role of these cells in promoting tumor angiogenesis, tumor progression and metastasis is nowadays well established, many questions remain open and new ones are emerging. These include the relationship between their phenotype and function, the mechanisms of pro-angiogenic programming, their contribution to resistance to anti-angiogenic treatments and to metastasis and their potential clinical use as biomarkers of angiogenesis and anti-angiogenic therapies. Here, we will review phenotypical and functional aspects of bone marrow-derived myelonomocytic cells and discuss some of the current outstanding questions.
Resumo:
La collaboration CLIC (Compact LInear Collider, collisionneur linéaire compact) étudie la possibilité de réaliser un collisionneur électron-positon linéaire à haute énergie (3 TeV dans le centre de masse) et haute luminosité (1034 cm-2s-1), pour la recherche en physique des particules. Le projet CLIC se fonde sur l'utilisation de cavités accélératrices à haute fréquence (30 GHz). La puissance nécessaire à ces cavités est fournie par un faisceau d'électrons de basse énergie et de haute intensité, appelé faisceau de puissance, circulant parallèlement à l'accélérateur linéaire principal (procédé appelé « Accélération à Double Faisceau »). Dans ce schéma, un des principaux défis est la réalisation du faisceau de puissance, qui est d'abord généré dans un complexe accélérateur à basse fréquence, puis transformé pour obtenir une structure temporelle à haute fréquence nécessaire à l'alimentation des cavités accélératrices de l'accélérateur linéaire principal. La structure temporelle à haute fréquence des paquets d'électrons est obtenue par le procédé de multiplication de fréquence, dont la manipulation principale consiste à faire circuler le faisceau d'électrons dans un anneau isochrone en utilisant des déflecteurs radio-fréquence (déflecteurs RF) pour injecter et combiner les paquets d'électrons. Cependant, ce type de manipulation n'a jamais été réalisé auparavant et la première phase de la troisième installation de test pour CLIC (CLIC Test Facility 3 ou CTF3) a pour but la démonstration à faible charge du procédé de multiplication de fréquence par injection RF dans un anneau isochrone. Cette expérience, qui a été réalisée avec succès au CERN au cours de l'année 2002 en utilisant une version modifiée du pré-injecteur du grand collisionneur électron-positon LEP (Large Electron Positron), est le sujet central de ce rapport. L'expérience de combinaison des paquets d'électrons consiste à accélérer cinq impulsions dont les paquets d'électrons sont espacés de 10 cm, puis à les combiner dans un anneau isochrone pour obtenir une seule impulsion dont les paquets d'électrons sont espacés de 2 cm, multipliant ainsi la fréquence des paquets d'électrons, ainsi que la charge par impulsion, par cinq. Cette combinaison est réalisée au moyen de structures RF résonnantes sur un mode déflecteur, qui créent dans l'anneau une déformation locale et dépendante du temps de l'orbite du faisceau. Ce mécanisme impose plusieurs contraintes de dynamique de faisceau comme l'isochronicité, ainsi que des tolérances spécifiques sur les paquets d'électrons, qui sont définies dans ce rapport. Les études pour la conception de la Phase Préliminaire du CTF3 sont détaillées, en particulier le nouveau procédé d'injection avec les déflecteurs RF. Les tests de haute puissance réalisés sur ces cavités déflectrices avant leur installation dans l'anneau sont également décrits. L'activité de mise en fonctionnement de l'expérience est présentée en comparant les mesures faites avec le faisceau aux simulations et calculs théoriques. Finalement, les expériences de multiplication de fréquence des paquets d'électrons sont décrites et analysées. On montre qu'une très bonne efficacité de combinaison est possible après optimisation des paramètres de l'injection et des déflecteurs RF. En plus de l'expérience acquise sur l'utilisation de ces déflecteurs, des conclusions importantes pour les futures activités CTF3 et CLIC sont tirées de cette première démonstration de la multiplication de fréquence des paquets d'électrons par injection RF dans un anneau isochrone.<br/><br/>The Compact LInear Collider (CLIC) collaboration studies the possibility of building a multi-TeV (3 TeV centre-of-mass), high-luminosity (1034 cm-2s-1) electron-positron collider for particle physics. The CLIC scheme is based on high-frequency (30 GHz) linear accelerators powered by a low-energy, high-intensity drive beam running parallel to the main linear accelerators (Two-Beam Acceleration concept). One of the main challenges to realize this scheme is to generate the drive beam in a low-frequency accelerator and to achieve the required high-frequency bunch structure needed for the final acceleration. In order to provide bunch frequency multiplication, the main manipulation consists in sending the beam through an isochronous combiner ring using radio-frequency (RF) deflectors to inject and combine electron bunches. However, such a scheme has never been used before, and the first stage of the CLIC Test Facility 3 (CTF3) project aims at a low-charge demonstration of the bunch frequency multiplication by RF injection into an isochronous ring. This proof-of-principle experiment, which was successfully performed at CERN in 2002 using a modified version of the LEP (Large Electron Positron) pre-injector complex, is the central subject of this report. The bunch combination experiment consists in accelerating in a linear accelerator five pulses in which the electron bunches are spaced by 10 cm, and combining them in an isochronous ring to obtain one pulse in which the electron bunches are spaced by 2 cm, thus achieving a bunch frequency multiplication of a factor five, and increasing the charge per pulse by a factor five. The combination is done by means of RF deflecting cavities that create a time-dependent bump inside the ring, thus allowing the interleaving of the bunches of the five pulses. This process imposes several beam dynamics constraints, such as isochronicity, and specific tolerances on the electron bunches that are defined in this report. The design studies of the CTF3 Preliminary Phase are detailed, with emphasis on the novel injection process using RF deflectors. The high power tests performed on the RF deflectors prior to their installation in the ring are also reported. The commissioning activity is presented by comparing beam measurements to model simulations and theoretical expectations. Eventually, the bunch frequency multiplication experiments are described and analysed. It is shown that the process of bunch frequency multiplication is feasible with a very good efficiency after a careful optimisation of the injection and RF deflector parameters. In addition to the experience acquired in the operation of these RF deflectors, important conclusions for future CTF3 and CLIC activities are drawn from this first demonstration of the bunch frequency multiplication by RF injection into an isochronous ring.<br/><br/>La collaboration CLIC (Compact LInear Collider, collisionneur linéaire compact) étudie la possibilité de réaliser un collisionneur électron-positon linéaire à haute énergie (3 TeV) pour la recherche en physique des particules. Le projet CLIC se fonde sur l'utilisation de cavités accélératrices à haute fréquence (30 GHz). La puissance nécessaire à ces cavités est fournie par un faisceau d'électrons de basse énergie et de haut courant, appelé faisceau de puissance, circulant parallèlement à l'accélérateur linéaire principal (procédé appelé « Accélération à Double Faisceau »). Dans ce schéma, un des principaux défis est la réalisation du faisceau de puissance, qui est d'abord généré dans un complexe accélérateur à basse fréquence, puis transformé pour obtenir une structure temporelle à haute fréquence nécessaire à l'alimentation des cavités accélératrices de l'accélérateur linéaire principal. La structure temporelle à haute fréquence des paquets d'électrons est obtenue par le procédé de multiplication de fréquence, dont la manipulation principale consiste à faire circuler le faisceau d'électrons dans un anneau isochrone en utilisant des déflecteurs radio-fréquence (déflecteurs RF) pour injecter et combiner les paquets d'électrons. Cependant, ce type de manipulation n'a jamais été réalisé auparavant et la première phase de la troisième installation de test pour CLIC (CLIC Test Facility 3 ou CTF3) a pour but la démonstration à faible charge du procédé de multiplication de fréquence par injection RF dans un anneau isochrone. L'expérience consiste à accélérer cinq impulsions, puis à les combiner dans un anneau isochrone pour obtenir une seule impulsion dans laquelle la fréquence des paquets d'électrons et le courant sont multipliés par cinq. Cette combinaison est réalisée au moyen de structures déflectrices RF qui créent dans l'anneau une déformation locale et dépendante du temps de la trajectoire du faisceau. Les résultats de cette expérience, qui a été réalisée avec succès au CERN au cours de l?année 2002 en utilisant une version modifiée du pré-injecteur du grand collisionneur électron-positon LEP (Large Electron Positon), sont présentés en détail.
Resumo:
The 2014 Santa Fe Bone Symposium provided a setting for the presentation and discussion of the clinical relevance of recent advances in the fields of osteoporosis and metabolic bone disease. The format included oral presentations of abstracts by endocrinology fellows, plenary lectures, panel discussions and breakout sessions, with ample opportunities for informal discussions before and after scheduled events. Topics addressed in these proceedings included a review of the important scientific publications in the past year, fracture prevention in patients with dysmobility and immobility, fracture liaison services for secondary fracture prevention, management of pre-menopausal osteoporosis, the role of bone microarchitecture in determining bone strength, measurement of microarchitecture in clinical practice and methods to improve the quality of bone density testing. This is a report of the proceedings of the 2014 Santa Fe Bone Symposium.
Resumo:
The aim of the present study was to determine the impact of trabecular bone score on the probability of fracture above that provided by the clinical risk factors utilized in FRAX. We performed a retrospective cohort study of 33,352 women aged 40-99 years from the province of Manitoba, Canada, with baseline measurements of lumbar spine trabecular bone score (TBS) and FRAX risk variables. The analysis was cohort-specific rather than based on the Canadian version of FRAX. The associations between trabecular bone score, the FRAX risk factors and the risk of fracture or death were examined using an extension of the Poisson regression model and used to calculate 10-year probabilities of fracture with and without TBS and to derive an algorithm to adjust fracture probability to take account of the independent contribution of TBS to fracture and mortality risk. During a mean follow-up of 4.7 years, 1754 women died and 1639 sustained one or more major osteoporotic fractures excluding hip fracture and 306 women sustained one or more hip fracture. When fully adjusted for FRAX risk variables, TBS remained a statistically significant predictor of major osteoporotic fractures excluding hip fracture (HR/SD 1.18, 95 % CI 1.12-1.24), death (HR/SD 1.20, 95 % CI 1.14-1.26) and hip fracture (HR/SD 1.23, 95 % CI 1.09-1.38). Models adjusting major osteoporotic fracture and hip fracture probability were derived, accounting for age and trabecular bone score with death considered as a competing event. Lumbar spine texture analysis using TBS is a risk factor for osteoporotic fracture and a risk factor for death. The predictive ability of TBS is independent of FRAX clinical risk factors and femoral neck BMD. Adjustment of fracture probability to take account of the independent contribution of TBS to fracture and mortality risk requires validation in independent cohorts.
Resumo:
Trabecular bone score (TBS) is a recently-developed analytical tool that performs novel grey-level texture measurements on lumbar spine dual X-ray absorptiometry (DXA) images, and thereby captures information relating to trabecular microarchitecture. In order for TBS to usefully add to bone mineral density (BMD) and clinical risk factors in osteoporosis risk stratification, it must be independently associated with fracture risk, readily obtainable, and ideally, present a risk which is amenable to osteoporosis treatment. This paper summarizes a review of the scientific literature performed by a Working Group of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis. Low TBS is consistently associated with an increase in both prevalent and incident fractures that is partly independent of both clinical risk factors and areal BMD (aBMD) at the lumbar spine and proximal femur. More recently, TBS has been shown to have predictive value for fracture independent of fracture probabilities using the FRAX® algorithm. Although TBS changes with osteoporosis treatment, the magnitude is less than that of aBMD of the spine, and it is not clear how change in TBS relates to fracture risk reduction. TBS may also have a role in the assessment of fracture risk in some causes of secondary osteoporosis (e.g., diabetes, hyperparathyroidism and glucocorticoid-induced osteoporosis). In conclusion, there is a role for TBS in fracture risk assessment in combination with both aBMD and FRAX.
Resumo:
Langerhans cell histiocytosis (LCH) is a rare disease caused by the clonal accumulation of dendritic Langerhans cells, which is often accompanied by osteolytic lesions. It has been reported that osteoclast-like cells play a major role in the pathogenic bone destruction seen in patients with LCH and these cells are postulated to originate from the fusion of DCs. However, due to the lack of reliable animal models the pathogenesis of LCH is still poorly understood. In this study, we have established a mouse model of histiocytosis- recapitulating human disease for osteolytic lesions seen in LCH patients. At 12 weeks after birth, severe bone lesions were observed in our multisystem histiocytosis (Mushi) model, when CD8α conventional dendritic cells (DCs) are transformed (MuTuDC) and accumulate. Most importantly, our study demonstrates that bone loss in LCH can be accounted for the transdifferentiation of MuTuDCs into functional osteoclasts both in vivo and in vitro. Moreover, we have shown that injected MuTuDCs reverse the osteopetrotic phenotype of oc/oc mice in vivo. In conclusion, our results support a crucial role of DCs in bone lesions in histiocytosis patients. Furthermore, our new model of LCH based on adoptive transfer of MuTuDC lines, leading to bone lesions within 1-2 weeks, will be an important tool for investigating the pathophysiology of this disease and ultimately for evaluating the potential of anti-resorptive drugs for the treatment of bone lesions.
Resumo:
UNLABELLED: Bone microarchitecture by high-resolution peripheral quantitative computed tomography (HR-pQCT) was assessed in adult patients with mild, moderate, and severe osteogenesis imperfecta (OI). The trabecular bone score (TBS), bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA), and dual X-ray and laser (DXL) at the calcaneus were likewise assessed in patients with OI. Trabecular microstructure and BMD in particular were severely altered in patients with OI. INTRODUCTION: OI is characterized by high fracture risk but not necessarily by low BMD. The main purpose of this study was to assess bone microarchitecture and BMD at different skeletal sites in different types of OI. METHODS: HR-pQCT was performed in 30 patients with OI (mild OI-I, n = 18 (41.8 [34.7, 55.7] years) and moderate to severe OI-III-IV, n = 12 (47.6 [35.3, 58.4] years)) and 30 healthy age-matched controls. TBS, BMD by DXA at the lumbar spine and hip, as well as BMD by DXL at the calcaneus were likewise assessed in patients with OI only. RESULTS: At the radius, significantly lower trabecular parameters including BV/TV (p = 0.01 and p < 0.0001, respectively) and trabecular number (p < 0.0001 and p < 0.0001, respectively) as well as an increased inhomogeneity of the trabecular network (p < 0.0001 and p < 0.0001, respectively) were observed in OI-I and OI-III-IV in comparison to the control group. Similar results for trabecular parameters were found at the tibia. Microstructural parameters were worse in OI-III-IV than in OI-I. No significant differences were found in cortical thickness and cortical porosity between the three subgroups at the radius. The cortical thickness of the tibia was thinner in OI-I (p < 0.001), but not OI-III-IV, when compared to controls. CONCLUSIONS: Trabecular BMD and trabecular bone microstructure in particular are severely altered in patients with clinical OI-I and OI-III-IV. Low TBS and DXL and their significant associations to HR-pQCT parameters of trabecular bone support this conclusion.