341 resultados para Orthogonal Activation Functions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary : Several signalling cascades are initiated through the triggering of the T cell receptor (TCR) by an antigenic peptide expressed at the surface of an antigen presenting cell. These pathways lead to morphological changes controlling T cell adhesiveness and migration to the site of infection, and to the activation of transcription factors that regulate key genes for the proper development of the immune response. Amongst them, the nuclear factor xB (NF-κB) is the subject of intense research since more than twenty years because deregulated NF-κB signalling in lymphocytes can lead to immunodeficiency, autoimmunity or lymphomas. Therefore, the understanding of the molecular mechanisms regulating NF-κB activation is important for the development of new therapeutics aimed at treating various diseases. In T lymphocytes, a complex composed of CARMAI, BCL10 and MALT1 relays signals from TCR proximal events to NF-κB activation. Gene translocations of the BCL10 or MALTI genes or oncogenic mutations affecting CARNA 1 result in constitutive NF-κB activation and are related to the development of certain forms of lymphomas. MALT1 contains acaspase-like domain, but it is unknown whether this domain is proteolytically active. In this study, we found that MALT1 has arginine-directed proteolytic activity. We showed that the proteolytic activity of MALT 1 is key to TCR-induced NF-κB activation and production of interleukin 2. We identified BCL 10 as a MALT 1 substrate, and we showed that its cleavage regulates T cell adhesion to the extracellular matrix protein fibronectin. Furthermore, we identified caspase 10 as another substrate of MALT1. caspase 10 is a close homologue of caspase 8 and is known to be involved in the induction of apoptosis upon Fast or TRAIL stimulation. We showed that caspase 10 is important for TCR-induced NF-κB activation and interleukin 2 production, identifying for the first time a non apoptotic function for caspase 10. These data provide evidence for previously uncharacterized roles of MALT 1 and BCL 10 in the regulation of T cell adhesion and of caspase 10 in the activation of lymphocytes, and allow a better understanding of the molecular mechanisms of T lymphocyte activation. Since the proteolytic activity of MALT1 is essential to T cell activation, it suggests that the targeting of this activity may be relevant for the development of immunomodulatory or anticancer drugs. Résumé : De nombreuses voies de signalisation sont initiées via la stimulation des récepteurs des cellules T (TCR) par un peptide antigénique exprimé à la surface d'une cellule présentatrice d'antigènes. Ces cascades de signalisation produisent des changements morphologiques qui contrôlent l'adhésion des cellules T et leur migration vers le site d'infection. Elles contrôlent également l'activation de facteurs de transcription qui régulent la transcription de gènes importants pour la réponse immunitaire. Parmi ces derniers, le facteur nucléaire KB (NF-κB) joue un rôle essentiel, puisqu'une régulation aberrante de son activité dans les lymphocytes peut causer des immunodéficiences, des maladies autoimmunes ou des lymphomes. C'est pour cela que la compréhension des mécanismes moléculaires qui contrôlent l'activation de NF-κB est donc importante pour le développement de nouvelles thérapies. Un complexe contenant les protéines CAIZMAI, BCL10 et MALT1 transmet, dans les lymphocytes T, le signal du TCR vers l'activation de NF-κB. Des translocations des gènes qui codent pour BCL10 et MALTI et des mutations affectant la fonction de CARNAI ont été liées au développement de certaines formes de lymphomes. MALTI contient un domaine qui ressemble au domaine catalytique présent dans les caspases, mais il n'est pas connu si ce domaine a une activité protéolytique. Dans cette étude, nous avons découvert que MALTI est une protéase qui a une spécificité pour les acides aminés basiques comme l'arginine. Nous montrons que l'activité protéolytique de MALTI est importante pour l'activation de NF-κB et la production d'interleukine 2 après stimulation du TCR. Nous avons observé que BCL10 est clivé par MALTI pendant l'activation des lymphocytes T, et que ce clivage est impliqué dans la régulation de l'adhésion des lymphocytes T à la fibronectin, une protéine de la matrice extracellulaire. De plus, nous avons identifié que la caspase 10, qui a une grande homologie avec la caspase 8 et qui jusqu'à maintenant est connue pour son rôle dans l'induction de la mort cellulaire en réponse à une stimulation par Fast ou par TRAIL, est également un substrat de MALT 1. En montrant que la caspase 10 est nécessaire à l' activation de NF-icB et à la production de l'interleukine 2 après stimulation du TCR, nous décrivons pour la première fois une fonction non apoptotique de la caspase 10. Ces résultats décrivent de nouveaux rôles pour MALT1 et BCL10 dans le contrôle de l'adhésion des lymphocytes T et de la caspase 10 pour l'activation des lymphocytes T. Puisque l'activité protéolytique de MALT1 est essentielle pour l'activation des lymphocytes T, nous suggérons que cibler cette activité protéolytique de MALT 1 pourrait amener de nouvelles possibilités de traitement de maladies où une activation aberrante des lymphocytes est impliquée.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

T-cell receptor (TCR) engagement induces the maturation of thymocytes and the activation and proliferation of peripheral T cells through signaling pathways that target several transcription factors. The transcription factor nuclear factor-κB (NF-κB) has an essential role in the activation of mature T cells but the signaling pathway leading from TCR stimulation to NF-κB activation is not well defined. Carma1, Bcl10 and MALT1 are recently identified proteins that have an important and previously unexpected role in antigen receptor-induced NF-κB activation and the control of lymphocyte proliferation. We believe that the recent advances in this field could stimulate research for the development of new immunomodulatory drugs and could lead to a better understanding of the molecular mechanisms underlying the formation of lymphomas and potentially of other immune disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DP1, a dimerization partner protein of the transcription factor E2F, is known to inhibit Wnt/β-catenin signalling along with E2F, although the function of DP1 itself was not well characterized. Here, we present a novel dual regulatory mechanism of Wnt/β-catenin signalling by DP1 independent from E2F. DP1 negatively regulates Wnt/β-catenin signalling by inhibiting Dvl-Axin interaction and by enhancing poly-ubiquitination of β-catenin. In contrast, DP1 positively modulates the signalling upon Wnt stimulation, via increasing cytosolic β-catenin and antagonizing the kinase activity of NLK. In Xenopus embryos, DP1 exerts both positive and negative roles in Wnt/β-catenin signalling during anteroposterior neural patterning. From subcellular localization analyses, we suggest that the dual roles of DP1 in Wnt/β-catenin signalling are endowed by differential nucleocytoplasmic localizations. We propose that these dual functions of DP1 can promote and stabilize biphasic Wnt-on and Wnt-off states in response to a gradual gradient of Wnt/β-catenin signalling to determine differential cell fates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The CD8 coreceptor plays a crucial role in both T cell development in the thymus and in the activation of mature T cells in response to Ag-specific stimulation. In this study we used soluble peptides-MHC class I (pMHC) multimeric complexes bearing mutations in the CD8 binding site that impair their binding to the MHC, together with altered peptide ligands, to assess the impact of CD8 on pMHC binding to the TCR. Our data support a model in which CD8 promotes the binding of TCR to pMHC. However, once the pMHC/TCR complex is formed, the TCR dominates the pMHC/TCR dissociation rates. As a consequence of these molecular interactions, under physiologic conditions CD8 plays a key role in complex formation, resulting in the enhancement of CD8 T cell functions whose specificity, however, is determined by the TCR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paracaspase MALT1 is pivotal in antigen receptor-mediated lymphocyte activation and lymphomagenesis. MALT1 contains a caspase-like domain, but it is unknown whether this domain is proteolytically active. Here we report that MALT1 had arginine-directed proteolytic activity that was activated after T cell stimulation, and we identify the signaling protein Bcl-10 as a MALT1 substrate. Processing of Bcl-10 after Arg228 was required for T cell receptor-induced cell adhesion to fibronectin. In contrast, MALT1 activity but not Bcl-10 cleavage was essential for optimal activation of transcription factor NF-kappaB and production of interleukin 2. Thus, the proteolytic activity of MALT1 is central to T cell activation, which suggests a possible target for the development of immunomodulatory or anticancer drugs

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently it has been shown that the c-Jun N-terminal kinase (JNK) plays a role in thrombin preconditioning (TPC) in vivo and in vitro. To investigate further the pathways involved in TPC, we performed an immunohistochemical study in hippocampal slice cultures. Here we show that the major target of JNK, the AP-1 transcription factor c-Jun, is activated by phosphorylation in the nuclei of neurons of the CA1 region by using phospho-specific antibodies against the two JNK phosphorylation sites. The activation is early and transient, peaking at 90 min and not present by 3 hr after low-dose thrombin administration. Treatment of cultures with a synthetic thrombin receptor agonist results in the same c-Jun activation profile and protection against subsequent OGD, both of which are prevented by specific JNK inhibitors, showing that thrombin signals through PAR-1 to JNK. By using an antibody against the Ser 73 phosphorylation site of c-Jun, we identify possible additional TPC substrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ligands and receptors of the TNF superfamily are therapeutically relevant targets in a wide range of human diseases. This chapter describes assays based on ELISA, immunoprecipitation, FACS, and reporter cell lines to monitor interactions of tagged receptors and ligands in both soluble and membrane-bound forms using unified detection techniques. A reporter cell assay that is sensitive to ligand oligomerization can identify ligands with high probability of being active on endogenous receptors. Several assays are also suitable to measure the activity of agonist or antagonist antibodies, or to detect interactions with proteoglycans. Finally, self-interaction of membrane-bound receptors can be evidenced using a FRET-based assay. This panel of methods provides a large degree of flexibility to address questions related to the specificity, activation, or inhibition of TNF-TNF receptor interactions in independent assay systems, but does not substitute for further tests in physiologically relevant conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Tissue factor (TF) activation of the coagulation proteases enhances inflammation in animal models of arthritis and endotoxemia, but the mechanism of this effect is not yet fully understood - in particular, whether this is primarily due to fibrin formation or through activation of protease activated receptors (PARs). METHODS: We induced extravascular inflammation by injection of recombinant soluble murine TF (sTF1-219) in the hind paw. The effects of thrombin inhibition, fibrinogen and platelet depletion were evaluated, as well as the effects of PAR deficiency using knockout mice deficient for each of the PARs. RESULTS: Injection of soluble TF provoked a rapid onset of paw swelling. Inflammation was confirmed histologically and by increased serum IL-6 levels. Inflammation was significantly reduced by depletion of fibrinogen (P < 0.05) or platelets (P = 0.015), and by treatment with hirudin (P = 0.04) or an inhibitor of activated factor VII (P < 0.001) compared with controls. PAR-4-deficient mice exhibited significantly reduced paw swelling (P = 0.003). In contrast, a deficiency in either PAR-1, PAR-2 or PAR-3 did not affect the inflammatory response to soluble TF injection. CONCLUSION: Our results show that soluble TF induces acute inflammation through a thrombin-dependent pathway and both fibrin deposition and platelet activation are essential steps in this process. The activation of PAR-4 on platelets is crucial and the other PARs do not play a major role in soluble TF-induced inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The position of a gene in the genome may have important consequences for its function. Therefore, when a new duplicate gene arises, its location may be critical in determining its fate. Our recent work in humans, mouse, and Drosophila provided a test by studying the patterns of duplication in sex chromosome evolution. We revealed a bias in the generation and recruitment of new gene copies involving the X chromosome that has been shaped largely by selection for male germline functions. The gene movement patterns we observed reflect an ongoing process as some of the new genes are very young while others were present before the divergence of humans and mouse. This suggests a continuing redistribution of male-related genes to achieve a more efficient allocation of male functions. This notion should be further tested in organisms employing other sex determination systems or in organisms differing in germline sex chromosome inactivation. It is likely that the selective forces that were detected in these studies are also acting on other types of duplicate genes. As a result, future work elucidating sex chromosome differentiation by other mutational mechanisms will shed light on this important process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Injury of an arterial vessel wall acutely triggers a multifaceted process of thrombus formation, which is dictated by the high-shear flow conditions in the artery. In this overview, we describe how the classical concept of arterial thrombus formation and vascular occlusion, driven by platelet activation and fibrin formation, can be extended and fine-tuned. This has become possible because of recent insight into the mechanisms of: (i) platelet-vessel wall and platelet-platelet communication, (ii) autocrine platelet activation, and (iii) platelet-coagulation interactions, in relation to blood flow dynamics. We list over 40 studies with genetically modified mice showing a role of platelet and plasma proteins in the control of thrombus stability after vascular injury. These include multiple platelet adhesive receptors and other junctional molecules, components of the ADP receptor signalling cascade to integrin activation, proteins controlling platelet shape, and autocrine activation processes, as well as multiple plasma proteins binding to platelets and proteins of the intrinsic coagulation cascade. Regulatory roles herein of the endothelium and other blood cells are recapitulated as well. Patient studies support the contribution of platelet- and coagulation activation in the regulation of thrombus stability. Analysis of the factors determining flow-dependent thrombus stabilization and embolus formation in mice will help to understand the regulation of this process in human arterial disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Site-directed mutagenesis and molecular dynamics simulations of the alpha 1B-adrenergic receptor (AR) were combined to explore the potential molecular changes correlated with the transition from R (inactive state) to R (active state). Using molecular dynamics analysis we compared the structural/dynamic features of constitutively active mutants with those of the wild type and of an inactive alpha 1B-AR to build a theoretical model which defines the essential features of R and R. The results of site-directed mutagenesis were in striking agreement with the predictions of the model supporting the following hypothesis. (i) The equilibrium between R and R depends on the equilibrium between the deprotonated and protonated forms, respectively, of D142 of the DRY motif. In fact, replacement of D142 with alanine confers high constitutive activity to the alpha 1B-AR. (ii) The shift of R143 of the DRY sequence out of a conserved 'polar pocket' formed by N63, D91, N344 and Y348 is a feature common to all the active structures, suggesting that the role of R143 is fundamental for mediating receptor activation. Disruption of these intramolecular interactions by replacing N63 with alanine constitutively activates the alpha 1B-AR. Our findings might provide interesting generalities about the activation process of G protein-coupled receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract : Gene duplication is an essential source of material for the origin of genetic novelty and the evolution of lineage- or species-specific phenotypic traits. The reverse transcription of source gene mRNA followed by the genomic insertion of the resulting cDNA - retroposition - has provided the human genome with a significant number of gene copies during the last ~63 million years (MYA) of primate evolution. We estimated that at least 1 new functional gene (retrogene) per MYA emerged by retroposition in the primate lineage leading to humans. Using a combination of comparative sequencing and evolutionary simulations, we obtained strong evidence of functionality for 7 primate specific retrogenes. Most of these genes are specifically expressed in testis suggesting that retroposition has contributed with genetic raw material necessary for the evolution ofmale-specific functions in primates. We characterized CDC14Bretro (identified in the previous survey) that originated from the retroposition of a cell cycle gene - CDC14B - in the common ancestor of humans and apes. We demonstrate that CDC14Bretro experienced a period of intense positive selection in the African ape ancestor. By virtue of the amino acid substitutions that occurred during this period CDC 14Bretro adapted to a new subcellular compartment in African apes. Further analyses indicate that this subcellular shift reflects the evolution of anew functional role of CDC 14Bretro. Prompted by this result, we used yeast (Saccharomyces cerevisiae) to investigate on a global scale the extent of functional diversification of duplicate genes through the subcellular adaptation of their encoded proteins. We found that duplicate proteins frequently evolved new cellular localization patterns, either by partitioning of ancestral localizations ("sublocalization"), or more frequently by relocalization to previously unoccupied compartments ("neolocalization"). Interestingly, proteins involved in processes with a wider subcellular distribution more frequently evolved new localization patterns suggesting that subcellular localization changes are dependent on progenitor gene functions. Relocated proteins adapted to their new subcellular environments and evolved new functional roles through changes of their physio-chemical properties, expression levels, and interaction partners. Our work suggests an important role of subcellular adaptation for the emergence of new gene functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient initiation by the DNA polymerase of adenovirus type 2 requires nuclear factor I (NFI), a cellular sequence-specific transcription factor. Three functions of NFI--dimerization, DNA binding, and activation of DNA replication--are colocalized within the N-terminal portion of the protein. To define more precisely the role of NFI in viral DNA replication, a series of site-directed mutations within the N-terminal domain have been generated, thus allowing the separation of all three functions contained within this region. Impairment of the dimerization function prevents sequence-specific DNA binding and in turn abolishes the NFI-mediated activation of DNA replication. NFI DNA-binding activity, although necessary, is not sufficient to activate the initiation of adenovirus replication. A distinct class of NFI mutations that abolish the recruitment of the viral DNA polymerase to the origin also prevent the activation of replication. Thus, a direct interaction of NFI with the viral DNA polymerase complex is required to form a stable and active preinitiation complex on the origin and is responsible for the activation of replication by NFI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxisome proliferators regulate the transcription of genes by activating ligand-dependent transcription factors, which, due to their structure and function, can be assigned to the superfamily of nuclear hormone receptors. Three such peroxisome proliferator-activated receptors (PPAR alpha, beta, and gamma) have been cloned in Xenopus laevis. Their mRNAs are expressed differentially; xPPAR alpha and beta but not xPPAR gamma are expressed in oocytes and embryos. In the adult, expression of xPPAR alpha and beta appears to be ubiquitous, and xPPAR gamma is mainly observed in adipose tissue and kidney. Immunocytochemical analysis revealed that PPARs are nuclear proteins, and that their cytoplasmic-nuclear translocation is independent of exogenous activators. A target gene of PPARs is the gene encoding acyl-CoA oxidase (ACO), which catalyzes the rate-limiting step in the peroxisomal beta-oxidation of fatty acids. A peroxisome proliferator response element (PPRE), to which PPARs bind, has been identified within the promoter of the ACO gene. Besides the known xenobiotic activators of PPARs, such as hypolipidemic drugs, natural activators have been identified. Polyunsaturated fatty acids at physiological concentrations are efficient activators of PPARs, and 5,8,11,14-eicosatetraynoic acid (ETYA), which is the alkyne homolog of arachidonic acid, is the most potent activator of xPPAR alpha described to date. Taken together, our data suggest that PPARs have an important role in lipid metabolism.