434 resultados para Instanton partition function
Resumo:
Invariant NKT (iNKT) cells play critical roles in bridging innate and adaptive immunity. The Raptor containing mTOR complex 1 (mTORC1) has been well documented to control peripheral CD4 or CD8 T cell effector or memory differentiation. However, the role of mTORC1 in iNKT cell development and function remains largely unknown. By using mice with T cell-restricted deletion of Raptor, we show that mTORC1 is selectively required for iNKT but not for conventional T cell development. Indeed, Raptor-deficient iNKT cells are mostly blocked at thymic stage 1-2, resulting in a dramatic decrease of terminal differentiation into stage 3 and severe reduction of peripheral iNKT cells. Moreover, residual iNKT cells in Raptor knockout mice are impaired in their rapid cytokine production upon αGalcer challenge. Bone marrow chimera studies demonstrate that mTORC1 controls iNKT differentiation in a cell-intrinsic manner. Collectively, our data provide the genetic evidence that iNKT cell development and effector functions are under the control of mTORC1 signaling.
Resumo:
Microcirculation (2010) 17, 69-78. doi: 10.1111/j.1549-8719.2010.00002.x Abstract Background: This study was designed to explore the effect of transient inducible nitric oxide synthase (iNOS) overexpression via cationic liposome-mediated gene transfer on cardiac function, fibrosis, and microvascular perfusion in a porcine model of chronic ischemia. Methods and Results: Chronic myocardial ischemia was induced using a minimally invasive model in 23 landrace pigs. Upon demonstration of heart failure, 10 animals were treated with liposome-mediated iNOS-gene-transfer by local intramyocardial injection and 13 animals received a sham procedure to serve as control. The efficacy of this iNOS-gene-transfer was demonstrated for up to 7 days by reverse transcriptase-polymerase chain reaction in preliminary studies. Four weeks after iNOS transfer, magnetic resonance imaging showed no effect of iNOS overexpression on cardiac contractility at rest and during dobutamine stress (resting ejection fraction: control 27%, iNOS 26%; P = ns). Late enhancement, infarct size, and the amount of fibrosis were similar between groups. Although perfusion and perfusion reserve in response to adenosine and dobutamine were not significantly modified by iNOS-transfer, both vessel number and diameter were significantly increased in the ischemic area in the iNOS-treated group versus control (point score: control 15.3, iNOS 34.7; P < 0.05). Conclusions: Our findings demonstrate that transient iNOS overexpression does not aggravate cardiac dysfunction or postischemic fibrosis, while potentially contributing to neovascularization in the chronically ischemic heart.
Resumo:
Aim: When planning SIRT using 90Y microspheres, the partition model is used to refine the activity calculated by the body surface area (BSA) method to potentially improve the safety and efficacy of treatment. For this partition model dosimetry, accurate determination of mean tumor-to-normal liver ratio (TNR) is critical since it directly impacts absorbed dose estimates. This work aimed at developing and assessing a reliable methodology for the calculation of 99mTc-MAA SPECT/CT-derived TNR ratios based on phantom studies. Materials and methods: IQ NEMA (6 hot spheres) and Kyoto liver phantoms with different hot/background activity concentration ratios were imaged on a SPECT/CT (GE Infinia Hawkeye 4). For each reconstruction with the IQ phantom, TNR quantification was assessed in terms of relative recovery coefficients (RC) and image noise was evaluated in terms of coefficient of variation (COV) in the filled background. RCs were compared using OSEM with Hann, Butterworth and Gaussian filters, as well as FBP reconstruction algorithms. Regarding OSEM, RCs were assessed by varying different parameters independently, such as the number of iterations (i) and subsets (s) and the cut-off frequency of the filter (fc). The influence of the attenuation and diffusion corrections was also investigated. Furthermore, both 2D-ROIs and 3D-VOIs contouring were compared. For this purpose, dedicated Matlab© routines were developed in-house for automatic 2D-ROI/3D-VOI determination to reduce intra-user and intra-slice variability. Best reconstruction parameters and RCs obtained with the IQ phantom were used to recover corrected TNR in case of the Kyoto phantom for arbitrary hot-lesion size. In addition, we computed TNR volume histograms to better assess uptake heterogeneityResults: The highest RCs were obtained with OSEM (i=2, s=10) coupled with the Butterworth filter (fc=0.8). Indeed, we observed a global 20% RC improvement over other OSEM settings and a 50% increase as compared to the best FBP reconstruction. In any case, both attenuation and diffusion corrections must be applied, thus improving RC while preserving good image noise (COV<10%). Both 2D-ROI and 3D-VOI analysis lead to similar results. Nevertheless, we recommend using 3D-VOI since tumor uptake regions are intrinsically 3D. RC-corrected TNR values lie within 17% around the true value, substantially improving the evaluation of small volume (<15 mL) regions. Conclusions: This study reports the multi-parameter optimization of 99mTc MAA SPECT/CT images reconstruction in planning 90Y dosimetry for SIRT. In phantoms, accurate quantification of TNR was obtained using OSEM coupled with Butterworth and RC correction.
Resumo:
Objectif Un bolus unique d'étomidate inhibe une enzyme mitochondriale impliquée dans la synthèse du cortisol. Au sein de notre institution, tout patient candidat à une chirurgie cardiaque reçoit de l'étomidate à l'induction de l'anesthésie. L'objectif de cette étude a été de déterminer l'incidence des dysfonctions surrénaliennes chez les patients bénéficiant d'une chirurgie cardiaque et nécessitant de hautes doses de noradrénaline au cours de la période postopératoire. Type d'étude Étude rétrospective descriptive dans l'unité de réanimation d'un centre hospitalier universitaire. Patients et méthodes Soixante-trois patients admis en réanimation après chirurgie cardiaque nécessitant plus de 0,2μg/kg par minute de noradrénaline au cours des premières 48 heures postopératoires ont été étudiés. L'insuffisance surrénalienne absolue a été définie par un cortisol basal inférieur à 414nmo/l (15μg/dl), l'insuffisance surrénalienne relative par un cortisol basal entre 414nmo/l (15μg/dl) et 938nmo/l (34μg/dl) avec une augmentation de la cortisolémie (à 60 minutes après un test de stimulation par 250μg de corticotropine de synthèse) inférieure à 250nmo/l (9μg/dl). Résultats Quatorze patients (22 %) ont présenté une fonction surrénalienne normale, 10 (16 %) une insuffisance surrénalienne absolue et 39 (62 %) une insuffisance surrénalienne relative. Tous les patients ont reçu une substitution stéroïdienne, sans aucune différence d'évolution clinique entre les différents groupes. Conclusion L'incidence de l'insuffisance surrénalienne chez les patients qui ont reçu un bolus d'étomidate à l'induction, lors d'une chirurgie cardiaque avec circulation extracorporelle, et présenté une défaillance circulatoire postopératoire, est élevée.
Resumo:
Intracellular glucose signalling pathways control the secretion of glucagon and insulin by pancreatic islet α- and β-cells, respectively. However, glucose also indirectly controls the secretion of these hormones through regulation of the autonomic nervous system that richly innervates this endocrine organ. Both parasympathetic and sympathetic nervous systems also impact endocrine pancreas postnatal development and plasticity in adult animals. Defects in these autonomic regulations impair β-cell mass expansion during the weaning period and β-cell mass adaptation in adult life. Both branches of the autonomic nervous system also regulate glucagon secretion. In type 2 diabetes, impaired glucose-dependent autonomic activity causes the loss of cephalic and first phases of insulin secretion, and impaired suppression of glucagon secretion in the postabsorptive phase; in diabetic patients treated with insulin, it causes a progressive failure of hypoglycaemia to trigger the secretion of glucagon and other counterregulatory hormones. Therefore, identification of the glucose-sensing cells that control the autonomic innervation of the endocrine pancreatic and insulin and glucagon secretion is an important goal of research. This is required for a better understanding of the physiological control of glucose homeostasis and its deregulation in diabetes. This review will discuss recent advances in this field of investigation.
Resumo:
The relationship between the binding of Vicia villosa (VV) lectin and the expression of cytolytic function in T lymphoblasts has been investigated using flow cytofluorometric techniques. Spleen cells activated in vitro in 5-day mixed leukocyte cultures (MLC) were incubated sequentially with VV, rabbit anti-V antiserum, and fluoresceinated sheep anti-rabbit IgG. When these stained MLC cells were passed on a flow cytometer gated to exclude nonviable cells and small lymphocytes, a single heterogeneous peak of fluorescence was seen, as compared to control MLC cells that had not been incubated with VV. Fluorescence of lymphoblasts was dependent upon lectin dose and was eliminated when staining was performed in the presence of N-acetyl-D-galactosamine, the appropriate competitive sugar for VV. T cell blast populations activated against H-2, Mls, or parasite antigens all had comparable levels of fluorescence after staining with VV, although the cytolytic activity of these cells varied widely. Furthermore, when MLC lymphoblasts binding large or small amounts of VV were sorted on the basis of their relative fluorescence intensity and tested for cytolytic function, no appreciable difference in activity between the 2 populations was observed. These results are inconsistent with the hypothesis that VV binds selectively to cytolytic T lymphocytes.
Resumo:
OBJECTIVES: To evaluate the renal function outcome in children with unilateral hydronephrosis and urinary flow impairment at the pelviureteral junction with respect to the therapeutic strategy. METHODS: We retrospectively selected 45 children with iodine-123-hippuran renography performed at diagnosis and after 3 or more years of follow-up. All children had bilateral nonobstructive pattern findings on diuretic renography at follow-up. Eleven children were treated conservatively, and 34 underwent unilateral pyeloplasty. Split and individual renal function, measured by an accumulation index, was computed from background-corrected renograms for the affected and contralateral kidneys at diagnosis and the follow-up examination. RESULTS: Of 11 children treated conservatively, 9 had normal bilateral function at diagnosis, all had reached normal function at follow-up. Of the 34 operated kidneys, 12 (38%) had initially normal function that remained normal at the follow-up examination, and 22 had impaired function that had normalized at the follow-up examination in 15 (68%). The function of the contralateral kidneys was increased in 5 of 8 children with persistently abnormal affected kidneys. Pyeloplasty was performed in 23 children (68%) and 11 children (32%) younger and older than 1 year, respectively. The function of the affected kidneys increased in both groups, but normalization occurred only in the younger children. CONCLUSIONS: Of the children selected for conservative treatment, 82% had normal bilateral renal function at diagnosis that was normal in all at the follow-up examination. Of the children treated surgically, 65% had initially impaired function of the affected kidney that improved in 87% after pyeloplasty. Normalization of function was observed only in children who were younger than 1 year old at surgery. Persistently low function of the affected kidney was compensated for by the contralateral one regardless of the age at surgery.
Resumo:
BACKGROUND: The SCN5A gene encodes for the α-subunit of the cardiac sodium channel NaV1.5, which is responsible for the rapid upstroke of the cardiac action potential. Mutations in this gene may lead to multiple life-threatening disorders of cardiac rhythm or are linked to structural cardiac defects. Here, we characterized a large family with a mutation in SCN5A presenting with an atrioventricular conduction disease and absence of Brugada syndrome. METHOD AND RESULTS: In a large family with a high incidence of sudden cardiac deaths, a heterozygous SCN5A mutation (p.1493delK) with an autosomal dominant inheritance has been identified. Mutation carriers were devoid of any cardiac structural changes. Typical ECG findings were an increased P-wave duration, an AV-block I° and a prolonged QRS duration with an intraventricular conduction delay and no signs for Brugada syndrome. HEK293 cells transfected with 1493delK showed strongly (5-fold) reduced Na(+) currents with altered inactivation kinetics compared to wild-type channels. Immunocytochemical staining demonstrated strongly decreased expression of SCN5A 1493delK in the sarcolemma consistent with an intracellular trafficking defect and thereby a loss-of-function. In addition, SCN5A 1493delK channels that reached cell membrane showed gain-of-function aspects (slowing of the fast inactivation, reduction in the relative fraction of channels that fast inactivate, hastening of the recovery from inactivation). CONCLUSION: In a large family, congregation of a heterozygous SCN5A gene mutation (p.1493delK) predisposes for conduction slowing without evidence for Brugada syndrome due to a predominantly trafficking defect that reduces Na(+) current and depolarization force.
Resumo:
Summary : Sorting nexin (SNX) family members play important roles in intracellular protein and membrane trafficking, The membrane-tubulating SNX9 protein has been shown to interact with multiple components of the endocytic machinery and to participate in clathrin-mediated endocytosis of cell surface receptors. It has not been investigated if SNX9 may also participate in other protein sorting pathways that involve vesicular transport, specifically the biogenesis of lysosome-related organelles (LROs). Closely related to SNX9 is SNXl8, whose function is largely unknown. In this work, we have characterized the expression of SNX9 and SNXl8 in LRO-containing cells and investigated their role in protein trafficking during the formation of LROs. Our results indicate that SNX9 and SNXl8 are not essential for the formation of LROs, nor for the sorting of melanosomal proteins. We investigated how the level of intracellular SNX9 protein is regulated and found that it is a substrate of the ubiquitin ligase Itch, a member of the NEDD4 family of E3 ubiquitin ligases. Itch ubiquitylates SNX9 and regulates SNX9 levels by enhancing its degradation. Using ? truncated proteins we found that the interaction with SNX9 is mediated by the proline-rich domain of Itch, a domain distinct from the conventional WW recognition domain, and the SH3 domain of SNX9. Interaction with the PRD of Itch is essential for SNX9 ubiquitylation and degradation. We further showed that Itch binding is not affected by tyrosine phosphorylation of SNX9. Using lentivector-mediated siRNA techniques, we found that Itch regulates the level of melanosomal proteins, while knock-down of SNX9 does not alter their level. Interestingly, we revealed that silencing of SNXIS affects the amount of the melanosomal protein Melan-A, but also of SNX9, and that SNXl8 can interact with SNX9. Taken together, our results highlight that the pool of substrates of NEDD4 family E3 ligases extends to proteins containing SH3 domains and provide insight into the potential functions of SNXI8. Résumé : Les membres de la famille des Sorting Nexins (SNX) jouent des rôles importants dans le trafic intracellulaire de protéines et membranes. Il a été démontré que la protéine SNX9, qui génère les tubules membranaires, interagit avec plusieurs composants de la machinerie d'endocytose et participe à l'endocytose des récepteurs de surface mediée par la clathrine. Aucune étude n'a investigué si SNX9 pourrait aussi participer à d'autres voies de trafic de protéines tel que le transport vésiculaire, et plus particulièrement la biogenèse des organites lysosomaux ("lysosome-related organelles", LR©s). SNXl8 est similaire à SNX9, mais sa fonction est largement inconnue. Dans ce travail, nous avons caractérisé l'expression de SNX9 et SNX18 dans des cellules contenants des LROs et investigué leur rôle dans le trafic de protéines pendant la formation des LROS. Nos résultats indiquent que SNX9 et SNXI8 ne sont essentiels ni pour la formation des LR©s, ni pour le trafic de protéines mélanosomales. Nous avons examiné la régulation du niveau intracellulaire de la protéine SNX9 et avons trouvé qu'elle est un substrat de l'ubiquitine ligase Itch, un membre de la famille NEDD4 des ubiquitine ligases E3. Itch ubiquitine SNX9 et régule les niveaux de SNX9 en augmentant sa dégradation. En utilisant des protéines mutées nous avons découvert que l'interaction avec SNX9 est médiée par le domaine riche en proline de Itch, qui est différent du domaine conventionnel de reconnaissance WW, et par le domaine SH3 de SNX9. L'interaction avec le domaine riche en proline de Itch est essentielle pour l'ubiquitination et la dégradation de SNX9. De plus, nous avons montré que cette liaison n'est pas affectée par la phosphorylation des résidus tyrosine de SNX9. En utilisant des vecteurs lentiviraux exprimant des siARN, nous avons trouvé que Itch régule les niveaux de protéines mélanosomales, alors que l'extinction de l'expression de SNX9 ne change pas leurs niveaux. En autre, nous avons révélé que la diminution de SNXl8 affecte le niveau de la protéine mélanosomale Melan-A et de SNX9, et aussi que SNXl8 peut interagir avec SNX9. En résumé, nos résultats démontrent que l'ensemble des substrats de la famille NEDD4 des ubiquitine ligases E3 s'élargit aux protéines contenant des domaines SH3 et ouvrent des perspectives sur les fonctions potentielles de SNXl8.
Resumo:
Bone destruction is a prominent feature of multiple myeloma, but conflicting data exist on the expression and pathophysiologic involvement of the bone remodeling ligand RANKL in this disease and the potential therapeutic benefits of its targeted inhibition. Here, we show that RANKL is expressed by primary multiple myeloma and chronic lymphocytic leukemia (CLL) cells, whereas release of soluble RANKL was observed exclusively with multiple myeloma cells and was strongly influenced by posttranscriptional/posttranslational regulation. Signaling via RANKL into multiple myeloma and CLL cells induced release of cytokines involved in disease pathophysiology. Both the effects of RANKL on osteoclastogenesis and cytokine production by malignant cells could be blocked by disruption of RANK-RANKL interaction with denosumab. As we aimed to combine neutralization of RANKL with induction of antibody-dependent cellular cytotoxicity of natural killer (NK) cells against RANKL-expressing malignant cells and as denosumab does not stimulate NK reactivity, we generated RANK-Fc fusion proteins with modified Fc moieties. The latter displayed similar capacity compared with denosumab to neutralize the effects of RANKL on osteoclastogenesis in vitro, but also potently stimulated NK cell reactivity against primary RANKL-expressing malignant B cells, which was dependent on their engineered affinity to CD16. Our findings introduce Fc-optimized RANK-Ig fusion proteins as attractive tools to neutralize the detrimental function of RANKL while at the same time potently stimulating NK cell antitumor immunity.
Resumo:
Kinematic functional evaluation with body-worn sensors provides discriminative and responsive scores after shoulder surgery, but the optimal movements' combination has not yet been scientifically investigated. The aim of this study was the development of a simplified shoulder function kinematic score including only essential movements. The P Score, a seven-movement kinematic score developed on 31 healthy participants and 35 patients before surgery and at 3, 6 and 12 months after shoulder surgery, served as a reference.Principal component analysis and multiple regression were used to create simplified scoring models. The candidate models were compared to the reference score. ROC curve for shoulder pathology detection and correlations with clinical questionnaires were calculated.The B-B Score (hand to the Back and hand upwards as to change a Bulb) showed no difference to the P Score in time*score interaction (P > .05) and its relation with the reference score was highly linear (R(2) > .97). Absolute value of correlations with clinical questionnaires ranged from 0.51 to 0.77. Sensitivity was 97% and specificity 94%.The B-B and reference scores are equivalent for the measurement of group responses. The validated simplified scoring model presents practical advantages that facilitate the objective evaluation of shoulder function in clinical practice.
Resumo:
This paper presents the predicted flow dynamics from the application of a Reynolds-averaged NavierStokes model to a series of bifurcation geometries with morphologies measured during previous flume experiments. The topography of the bifurcations consists of either plane or bedform-dominated beds which may or may not possess discordance between the two bifurcation distributaries. Numerical predictions are compared with experimental results to assess the ability of the numerical model to reproduce the division of flow into the bifurcation distributaries. The hydrodynamic model predicts: (1) diverting fluxes in the upstream channel which direct water into the distributaries; (2) super-elevation of the free surface induced at the bifurcation edge by pressure differences; and (3) counter-rotating secondary circulation cells which develop upstream of the apex of the bifurcation and move into the downstream channels, with water converging at the surface and diverging at the bed. When bedforms are not present, weak transversal fluxes characterize the upstream channel for almost its entire length, associated with clearly distinguishable secondary circulation cells, although these may be under-estimated by the turbulence model used in the solution. In the bedform dominated case, the same hydrodynamic conditions were not observed, with the bifurcation influence restricted and depth scale secondary circulation cells not forming. The results also demonstrate the dominant effect bed discordance has upon flow division between the two distributaries. Finally, results indicate that in bedform dominated rivers. Consequently, we suggest that sand-bed river bifurcations are more likely to have an influence that extends much further upstream and have a greater impact upon water distribution. This may contribute to observed morphological differences between sand-bedded and gravel-bedded braided river networks. Copyright (C) 2012 John Wiley & Sons, Ltd.