245 resultados para Galaxies : Interactions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following perturbation, an ecosystem (flora, fauna, soil) should evolve as a function of time at a rate conditioned by external variables (relief, climate, geology). More recently, biogeomorphologists have focused upon the notion of co-development of geomorphic processes with ecosystems over very short through to very long (evolutionary) timescales. Alpine environments have been a particular focus of this co-development. However, work in this field has tended to adopt a simplified view of the relationship between perturbation and succession, including: how the landform and ecosystem itself conditions the impact of a perturbation to create a complex spatial response impact; and how perturbations are not simply ecosystem destroyers but can be a significant source of ecosystem resources. What this means is that at the within landform scale, there may well be a complex and dynamic topographic and sedimentological template that co-develops with soil, flora and fauna. Here, we present and test a conceptual model of this template for a subalpine alluvial fan. We combine detailed floristic inventory with soil inventory, determination of edaphic variables and analysis of historical aerial imagery. Spatial variation in the probability of perturbation of sites on the fan surface was associated with down fan variability in the across-fan distribution of fan ages, fan surface channel characteristics and fan surface sedimentology. Floristic survey confirmed that these edaphic factors distinguished site floristic richness and plant communities up until the point that the soil-vegetation system was sufficiently developed to sustain plant communities regardless of edaphic conditions. Thus, the primary explanatory variable was the estimated age of each site, which could be tied back into perturbation history and its spatial expression due to the geometry of the fan: distinct plant communities were emergent both across fan and down fan, a distribution maintained by the way in which the fan dissipates potentially perturbing events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among invasive species, ants are a particularly prominent group with enormous impacts on native biodiversity and ecosystem functioning. Globalization and on-going climate change are likely to increase the rate of ant invasions in the future, leading to simultaneous introductions of several highly invasive species within the same area, Here, we investigate pairwise interactions among four highly invasive species, Linepithema humile,Lashis neglectus, Pheidole megacephala and Wasmannia auropunctata, at the whole colony level, using a laboratory set-up. :Each colony consisted of 300 workers and one queen. The number of surviving workers in the competing colonies was recorded daily over 7 weeks. We modelled the survival of each colony during pairwise colony interactions, using a nonlinear model characterizing the survival dynamics of each colony individually. The least dominant species was P. megacephala, which always went extinct. Interactions among the three other species showed more complex dynamics, rendering the outcome of the interactions less predictable. Overall, W auropunctata and L neglectus were the most dominant species. This study shows the importance of scaling up to the colony level in order to gain realism in predicting the outcome of multiple invasions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clines in phenotypes and genotype frequencies across environmental gradients are commonly taken as evidence for spatially varying selection. Classical examples include the latitudinal clines in various species of Drosophila, which often occur in parallel fashion on multiple continents. Today, genomewide analysis of such clinal systems provides a fantastic opportunity for unravelling the genetics of adaptation, yet major challenges remain. A well-known but often neglected problem is that demographic processes can also generate clinality, independent of or coincident with selection. A closely related issue is how to identify true genic targets of clinal selection. In this issue of Molecular Ecology, three studies illustrate these challenges and how they might be met. Bergland et al. report evidence suggesting that the well-known parallel latitudinal clines in North American and Australian D. melanogaster are confounded by admixture from Africa and Europe, highlighting the importance of distinguishing demographic from adaptive clines. In a companion study, Machado et al. provide the first genomic comparison of latitudinal differentiation in D. melanogaster and its sister species D. simulans. While D. simulans is less clinal than D. melanogaster, a significant fraction of clinal genes is shared between both species, suggesting the existence of convergent adaptation to clinaly varying selection pressures. Finally, by drawing on several independent sources of evidence, Bo?ičević et al. identify a functional network of eight clinal genes that are likely involved in cold adaptation. Together, these studies remind us that clinality does not necessarily imply selection and that separating adaptive signal from demographic noise requires great effort and care.