326 resultados para FAD-binding mode
Resumo:
TWEAK is a recently cloned novel member of the TNF ligand family. Here we show that soluble TWEAK is sufficient to induce apoptosis in Kym-1 cells within 18 h. TWEAK-induced apoptosis is indirect and is mediated by the interaction of endogenous TNF and TNF receptor (TNFR)1, as each TNFR1-Fc, neutralizing TNF-specific antibodies and TNFR1-specific Fab fragments efficiently antagonize cell death induction. In addition to this indirect mode of action, co-stimulation of Kym-1 cells with TWEAK enhances TNFR1-mediated cell death induction. In contrast to TNF, TWEAK does only modestly activate NF-kappaB or c-jun N-terminal kinase (JNK) in Kym-1 cells. Although TWEAK binding to Kym-1 cells is easily detectable by flow cytometric analysis, we found neither evidence for expression of the recently identified TWEAK receptor Apo3/TRAMP/wsl/DR3/LARD, nor indications for direct interactions of TWEAK with TNFR. Together, these characteristics of TWEAK-induced signaling in Kym-1 cells argue for the existence of an additional, still undefined non-death domain-containing TWEAK receptor in Kym-1 cells.
Resumo:
T-cell hybridomas were obtained after fusion of BW 5147 thymoma and long-term cultured T cells specific for cytochrome c peptide 66-80 derivatized with a 2,4-dinitroaminophenyl (DNAP) group. The resulting hybridomas were selected for their capacity to specifically bind to soluble radiolabeled peptide antigen. One T-cell hybrid was positive for antigen binding. This hybrid T cell exhibits surface phenotypic markers of the parent antigen-specific T cells. The binding could be inhibited either by an excess of unlabeled homologous antigen or by cytochrome c peptide 11-25 derivatized with a 2-nitrophenylsulfenyl group. Several other peptide antigens tested failed to inhibit binding of the radioactive peptide. This suggests that a specific amino acid sequence, modified by a DNAP group, is the antigenic structure recognized by the putative T-cell receptor. In addition, direct interaction of DNAP-66-80 peptide with the hybridoma cell line induced production of the T-cell growth factor interleukin 2. Furthermore, supernatants derived from syngeneic macrophages pulsed with the relevant peptide also induced the antigen-specific hybridoma to produce interleukin 2.
Resumo:
By virtue of their general ability to bind (hold) translocating or unfolding polypeptides otherwise doomed to aggregate, molecular chaperones are commonly dubbed "holdases". Yet, chaperones also carry physiological functions that do not necessitate prevention of aggregation, such as altering the native states of proteins, as in the disassembly of SNARE complexes and clathrin coats. To carry such physiological functions, major members of the Hsp70, Hsp110, Hsp100, and Hsp60/CCT chaperone families act as catalytic unfolding enzymes or unfoldases that drive iterative cycles of protein binding, unfolding/pulling, and release. One unfoldase chaperone may thus successively convert many misfolded or alternatively folded polypeptide substrates into transiently unfolded intermediates, which, once released, can spontaneously refold into low-affinity native products. Whereas during stress, a large excess of non-catalytic chaperones in holding mode may optimally prevent protein aggregation, after the stress, catalytic disaggregases and unfoldases may act as nanomachines that use the energy of ATP hydrolysis to repair proteins with compromised conformations. Thus, holding and catalytic unfolding chaperones can act as primary cellular defenses against the formation of early misfolded and aggregated proteotoxic conformers in order to avert or retard the onset of degenerative protein conformational diseases.
Resumo:
This study investigated the development of all 3 components of episodic memory (EM), as defined by Tulving, namely, core factual content, spatial context, and temporal context. To this end, a novel, ecologically valid test was administered to 109 participants aged 4-16 years. Results showed that each EM component develops at a different rate. Ability to memorize factual content emerges early, whereas context retrieval abilities continue to improve until adolescence, due to persistent encoding difficulties (isolated by comparing results on free recall and recognition tasks). Exploration of links with other cognitive functions revealed that short-term feature-binding abilities contribute to all EM components, and executive functions to temporal and spatial context, although ability to memorize temporal context is predicted mainly by age.
Resumo:
In intestinal secretions, secretory IgA (SIgA) plays an important sentinel and protective role in the recognition and clearance of enteric pathogens. In addition to serving as a first line of defense, SIgA and SIgA x antigen immune complexes are selectively transported across Peyer's patches to underlying dendritic cells in the mucosa-associated lymphoid tissue, contributing to immune surveillance and immunomodulation. To explain the unexpected transport of immune complexes in face of the large excess of free SIgA in secretions, we postulated that SIgA experiences structural modifications upon antigen binding. To address this issue, we associated specific polymeric IgA and SIgA with antigens of various sizes and complexity (protein toxin, virus, bacterium). Compared with free antibody, we found modified sensitivity of the three antigens assayed after exposure to proteases from intestinal washes. Antigen binding further impacted on the immunoreactivity toward polyclonal antisera specific for the heavy and light chains of the antibody, as a function of the antigen size. These conformational changes promoted binding of the SIgA-based immune complex compared with the free antibody to cellular receptors (Fc alphaRI and polymeric immunoglobulin receptor) expressed on the surface of premyelocytic and epithelial cell lines. These data reveal that antigen recognition by SIgA triggers structural changes that confer to the antibody enhanced receptor binding properties. This identifies immune complexes as particular structural entities integrating the presence of bound antigens and adds to the known function of immune exclusion and mucus anchoring by SIgA.
Resumo:
PURPOSE: Congenital stationary night blindness (CSNB) is a clinically and genetically heterogeneous retinal disease. Although electroretinographic (ERG) measurements can discriminate clinical subgroups, the identification of the underlying genetic defects has been complicated for CSNB because of genetic heterogeneity, the uncertainty about the mode of inheritance, and time-consuming and costly mutation scanning and direct sequencing approaches. METHODS: To overcome these challenges and to generate a time- and cost-efficient mutation screening tool, the authors developed a CSNB genotyping microarray with arrayed primer extension (APEX) technology. To cover as many mutations as possible, a comprehensive literature search was performed, and DNA samples from a cohort of patients with CSNB were first sequenced directly in known CSNB genes. Subsequently, oligonucleotides were designed representing 126 sequence variations in RHO, CABP4, CACNA1F, CACNA2D4, GNAT1, GRM6, NYX, PDE6B, and SAG and spotted on the chip. RESULTS: Direct sequencing of genes known to be associated with CSNB in the study cohort revealed 21 mutations (12 novel and 9 previously reported). The resultant microarray containing oligonucleotides, which allow to detect 126 known and novel mutations, was 100% effective in determining the expected sequence changes in all known samples assessed. In addition, investigation of 34 patients with CSNB who were previously not genotyped revealed sequence variants in 18%, of which 15% are thought to be disease-causing mutations. CONCLUSIONS: This relatively inexpensive first-pass genetic testing device for patients with a diagnosis of CSNB will improve molecular diagnostics and genetic counseling of patients and their families and gives the opportunity to analyze whether, for example, more progressive disorders such as cone or cone-rod dystrophies underlie the same gene defects.
Resumo:
Abstract : Host-Cell Factor 1 (HCF-1) was first discovered in the study of the herpes simplex virus (HSV) infection. HCF-1 is one of the two cellular proteins that compose the VP16-induced complex, a key activator of HSV lytic infection. lncleed, when HSV infects human cells, it is able to enter two modes of infection: lytic or latent. The V`P16-induced complex promotes the lytic mode and in so doing the virus targets important cellular regulatory proteins, such as HCF-1, to manipulate the status of the infected cell. Indeed, HCF-1 regulates human cell proliferation and the cell cycle at different steps. In human, HCF-1 is unusual in that it undergoes a process of proteolytic maturation that results from cleavages at six centrally located 26 amino acid repeats called HCF-1pro repeats. This generates a heterodimeric complex of stably associated amino- (HCF-1n) and carboxy- (HCF-1c) terminal subunits. The absence of the HCF-1 N or HCF-1; subunit leads predominantly to either G1 or M phase defects, respectively. We have hypothesized that HCF-1 forms a heterodimeric complex to permit communication between the two subunits of HCF-1 involved in regulating different phases of the cell cycle. Indeed, there is evidence for such inter-subunit communication because a point mutation called P134S in the HCF-1N subunit in the temperature-sensitive hamster cell line tsBN67 causes, addition to G1- phase defects associated with the HCF-1n subunit, M-phase defects similar to the defects seen upon loss of HCF-1 function. Furthermore, inhibition of the proteolytic maturation of HCF-1 by deletion of the six HCF-1pro repeats (HCF-1Aimo) also leads to M-phase defects, specifically cytokinesis defects leading to binucleation, indicating that there is loss of HCF-15 function in the absence of HCF-1 maturation. I demonstrate that individual point mutations in each of the six HCF-1pro repeats that prevent HCF-1 proteolytic maturation also lead to binucleation; however, this defect can be latgely rescued by the presence of just one HCF-1pRO sequence in I-ICF»1. These results argue that processing itself is important for the HCF-1g function. In fact, until now, the hypothesis was that the proteolytic processing per se is more important for HCF-1C function than the proteolytic processing region. But I show that processing per se is not sufticient to rescue multinucleation, but that the HCF-lpm sequence itself is crucial. This discovery leads to the conclusion that the I-ICF-1pRO repeats have an additional function important for HCF-le function. From the studies of others, one potential function of the HCF-lrxo tepeats is as a binding site for O-link NAcetyl glycosamine tansferase (OGT) to glycosylate an HCF-1n-sunbunit region called the Basic region. This new function suggests the Basic region of HCF-1n is also implicated in the communication between the two subunits. This inter-subunit communication was analyzed in more detail with the studies of the Pl34S mutation and the residues 382-450 region of HCF-l that when removed prevents HCF-l subunit association. I demonstrate that the point mutation also leads to a binucleation defect in Hela cells as well as in the tsBN67 cells. In addition, the effect of this mutation on the regulation of HCF-1c activity seems to interfere with that of the HCF-lpgg repeats because the sum of the deletion of the proteolytic processing region and the point mutation surprisingly leads to re-establishment of correct cytokinesis. The study of the 382-450 HCF-lN region also yielded surprising results. This region important for the association of the two subunits is also important for both HCF-1c function in M phase and G1 phase progression. Thus, I have discovered two main functions of this region: its role in the regulation of HCF-lc function in M phase and its involvement in the regulation of G1/S phase ?- an HCF-1n function. These results support the importance of inter-subunit communication in HCF-1 functions. My research illuminates the understanding of the interaction of the two subunits by showing that the whole HCF-1n subunit is involved in the inter-subunit communication in order to regulate HCF-1c function. For this work, I was concentrated on the study of cytokinesis; the first phenotype showing the role of HCF-1c in the M phase. Then, I extended the study of the M phase with analysis of steps earlier to cytokinesis. Because some defects in the chromosome segregation was already described in the absence of HCF-1, I decided to continue the study of M phase by checking effects on the chromosome segregation. I showed that the HCF-1n subunit and HCF-1pro repeats are both important for this key step of M phase. I show that the binucleation phenotype resulting from deletion or mutation in HCF-1pro repeats, Pl34S point mutation or the lack of the region 382-450 are correlated with micronuclei, and chromosome segregation and alignment defects. This suggests that HCF«lç already regulates M phase during an early step and could be involved in the complex regulation of chromosome segregation. Because one of the major roles of HCF-1 is to be a transcription regulator, I also checked the capacity of HCF-1 to bind to the chromatin in my different cell lines. All my recombinant proteins can bind the chromatin, except for, as previously described, the HCF-1 with the P134S point mutation, This suggests that the binding of HCF-1 to the chromatin is not dependant to the Basic and proteolytic regions but more to the Kelch domain. Thus, if the function of HCF-ig in M phase is dependant to its chromatin association, the intercommunication and the proteolytic region are not involved in the ability to bind to the chromatin but more to bind to the right place of the chromatin or to be associated with the co-factors. Résumé : L'étude de l'infection par le virus Herpes Simplex (HSV) a permis la découverte de la protéine HCF-1 (Host-Cell Factor). HCF-1 est une des protéines cellulaires qui font partie du complexe induit par VP16 ; ce complexe est la clef pour l'activation de la phase lytique de HSV. Afin de manipuler les cellules infectées, le complexe induit pas le VPIG devrait donc cibler les protéines importantes pour la régulation cellulaire, telles que la protéine HCF-1. Cette dernière s'avère donc être un senseur pour la cellule et devrait également jouer un rôle de régulation lors des différentes phases du cycle cellulaire. Chez l'humain, HCF-1 a la particularité de devoir passer par une phase de maturation pour devenir active. Lors de cette maturation, la protéine subit une coupure protéolytique au niveau de six répétitions composées de 26 acides aminés, appelé HCF-1pro repeats. Cette coupure engendre la formation d'un complexe formé de deux sous-unités, HCF-1n et HCF-1c, associées l'une à l'autre de façon stable. Enlever la sous-unité HCF-IN ou C entraîne respectivement des défauts dans la phase G1 et M. Nous pensons donc que HCF-1 forme un complexe hétérodimérique afin de permettre la communication entre les molécules impliquées dans la régulation des différentes phases du cycle cellulaire. Cette hypothèse est déduite suite à deux études: l'une réalisée sur la lignée cellulaire tsBN67 et l'autre portant sur l'inhibition de la maturation protéolytique. La lignée cellulaire tsBN67, sensible à la température, porte la mutation Pl 345 dans la sous-unité HCF-1n. Cette mutation, en plus d'occasionner des défauts dans la phase G1 (défauts liés à la sous-unité HCF-1N), a aussi pour conséquence d'entrainer des défauts dans la phase M, défauts similaires à ceux dus a la perte de la sous-unité HCF-1c. Quant à la maturation protéolytique, l'absence de la région de la protéolyse provoque la binucléation, défaut lié à la cytokinèse, indiquant la perte de la fonction de la sous-unité HCF-1c. Au cours de ma thèse, j'ai démontré que des mutations dans les HCF-1=no repeats, qui bloquent la protéolyse, engendrent la binucléation ; cependant ce défaut peut être corrigé pas l'ajout d'un HCF-1pro repeat dans un HCF-1 ne contenant pas la région protéolytique. Ces résultats soutiennent l'idée que la région protéolytique est importante pour le bon fonctionnement de HCF-1c. En réalité jusqu'a maintenant on supposait que le mécanisme de coupure était plus important que la région impliquée pour la régulation de la fonction de HCF-1;. Mais mon étude montre que la protéolyse n'est pas suffisante pour éviter la binucléation ; en effet, les HCF-1pro repeats semblent jouer le rôle essentiel dans le cycle cellulaire. Cette découverte conduit à la conclusion que les HCF-1pro repeats ont sûrement une fonction autre qui serait cruciale pour la foncton de HCF-1c. Une des fonctions possibles est d'être le site de liaison de l'O-linked N-acetylglucosamine transférase (OGT) qui glycosylerait la région Basique de HCF-1n. Cette nouvelle fonction suggère que la région Basique est aussi impliquée dans la communication entre les deux sous- unités. L'intercommunication entre les deux sous-unités ai été d'ailleurs analysée plus en détail dans mon travail à travers l'étude de la mutation Pl34S et de la région 382-450, essentielle pour l'association des deux sous»unités. J'ai ainsi démontré que la mutation P134S entraînait aussi des défauts dans la cytokinése dans la lignée cellulaire Hela, de plus, son influence sur HCF-1c semble interférer avec celle de la région protéolytique. En effet, la superposition de ces deux modifications dans HCF-1 conduit au rétablissement d'une cytokinése correcte. Concernant la région 382 à 450, les résultats ont été assez surprenants, la perte de cette région provoque l'arrêt du cycle en G1 et la binucléation, ce qui tend à prouver son importance pour le bon fonctionnement de HCF-1n et de HCF-1c. Cette découverte appuie par conséquent l'hypotl1èse d'une intercommunicatzion entre les deux sous-unités mettant en jeu les différentes régions de HCF-1n. Grâce à mes recherches, j'ai pu améliorer la compréhension de l'interaction des deux sous-unités de HCF-1 en montrant que toutes les régions de HCF-1n sont engagées dans un processus d'intercommunication, dont le but est de réguler l'action de HCF-1c. J'ai également mis en évidence une nouvelle étape de la maturation de HCF-1 qui représente une phase importante pour l'activation de la fonction de HCF-1c. Afin de mettre à jour cette découverte, je me suis concentrée sur l'étude de l'impact de ces régions au niveau de la cytokinése qui fut le premier phénotype démontrant le rôle de HCF-1c dans la phase M. A ce jour, nous savons que HCF-1c joue un rôle dans la cytokinèse, nous ne connaissons pas encore sa fonction précise. Dans le but de cerner plus précisément cette fonction, j'ai investigué des étapes ultérieures ai la cytokinèse. Des défauts dans la ségrégation des chromosomes avaient déjà été observés, ai donc continué l'étude en prouvant que HCF-1n et les HCF-1pro repeats sont aussi importants pour le bon fonctionnement de cette étape clef également régulée par HCF-1c. J' ai aussi montré que la région 382-450 et la mutation P134S sont associées à un taux élevé de micronoyaux, de défauts dans la ségrégation des chromosomes. L'une des fonctions principales de HCF-1 étant la régulation de la transcription, j'ai aussi contrôlé la capacité de HCF-1 à se lier à la chromatine après insertion de mutations ou délétions dans HCF-1n et dans la région protéolytique. Or, à l'exception des HCF-1 contenant la mutation P134S, la sous-unité HCF-1c des HCF-1 tronquées se lie correctement à la chromatine. Cette constatation suggère que la liaison entre HCF-1c et chromatine n'est pas dépendante de la région Basique ou Protéolytique mais peut-être vraisemblablement de la région Kelch. Donc si le rôle de HCF-1c est dépendant de sa capacité â activer la transcription, l'intercommunication entre les deux sous-unités et la région protéolytique joueraient un rôle important non pas dans son habileté à se lier à la chromatine, mais dans la capacité de HCF-1 à s'associer aux co-facteurs ou à se placer sur les bonnes régions du génome.
Resumo:
RasGAP is a multifunctional protein that controls Ras activity and that is found in chromosomal passenger complexes. It also negatively or positively regulates apoptosis depending on the extent of its cleavage by caspase-3. RasGAP has been reported to bind to G3BP1 (RasGAP SH3-domain-binding protein 1), a protein regulating mRNA stability and stress granule formation. The region of RasGAP (amino acids 317-326) thought to bind to G3BP1 corresponds exactly to the sequence within fragment N2, a caspase-3-generated fragment of RasGAP, that mediates sensitization of tumor cells to genotoxins. While assessing the contribution of G3BP1 in the anti-cancer function of a cell-permeable peptide containing the 317-326 sequence of RasGAP (TAT-RasGAP₃₁₇₋₃₂₆), we found that, in conditions where G3BP1 and RasGAP bind to known partners, no interaction between G3BP1 and RasGAP could be detected. TAT-RasGAP₃₁₇₋₃₂₆ did not modulate binding of G3BP1 to USP10, stress granule formation or c-myc mRNA levels. Finally, TAT-RasGAP₃₁₇₋₃₂₆ was able to sensitize G3BP1 knock-out cells to cisplatin-induced apoptosis. Collectively these results indicate that G3BP1 and its putative RasGAP binding region have no functional influence on each other. Importantly, our data provide arguments against G3BP1 being a genuine RasGAP-binding partner. Hence, G3BP1-mediated signaling may not involve RasGAP.
Resumo:
TAT-RasGAP317-326, a cell-permeable 10-amino acid-long peptide derived from the N2 fragment of p120 Ras GTPase-activating protein (RasGAP), sensitizes tumor cells to apoptosis induced by various anticancer therapies. This RasGAP-derived peptide, by targeting the deleted in liver cancer-1 (DLC1) tumor suppressor, also hampers cell migration and invasion by promoting cell adherence and by inhibiting cell movement. Here, we systematically investigated the role of each amino acid within the RasGAP317-326 sequence for the anticancer activities of TAT-RasGAP317-326. We report here that the first three amino acids of this sequence, tryptophan, methionine, and tryptophan (WMW), are necessary and sufficient to sensitize cancer cells to cisplatin-induced apoptosis and to reduce cell migration. The WMW motif was found to be critical for the binding of fragment N2 to DLC1. These results define the interaction mode between the active anticancer sequence of RasGAP and DLC1. This knowledge will facilitate the design of small molecules bearing the tumor-sensitizing and antimetastatic activities of TAT-RasGAP317-326.
Resumo:
In the presence of 2-hydroxybiphenyl, the enhancer binding protein, HbpR, activates the sigma54-dependent P(hbpC) promoter and controls the initial steps of 2-hydroxybiphenyl degradation in Pseudomonas azelaica. In the activation process, an oligomeric HbpR complex of unknown subunit composition binds to an operator region containing two imperfect palindromic sequences. Here, the HbpR-DNA binding interactions were investigated by site-directed mutagenesis of the operator region and by DNA-binding assays using purified HbpR. Mutations that disrupted the twofold symmetry in the palindromes did not affect the binding affinity of HbpR, but various mutations along a 60 bp region, and also outside the direct palindromic sequences, decreased the binding affinity. Footprints of HbpR on mutant operator fragments showed that a partial loss of binding contacts occurs, suggesting that the binding of one HbpR 'protomer' in the oligomeric complex is impaired whilst leaving the other contacts intact. An HbpR variant, devoid of its N-terminal sensing A-domain, was unable to activate transcription from the hbpC promoter while maintaining protection of the operator DNA in footprints. Wild-type HbpR was unable to activate transcription from the hbpC promoter when delta A-HbpR was expressed in the same cell, suggesting the formation of (repressing) hetero-oligomers. This model implies that HbpR can self-associate on its operator DNA without effector recognition or ATP binding. Furthermore, our findings suggest that the N-terminal sensing domain of HbpR is needed to activate the central ATPase domain rather than to repress a constitutively active C domain, as is the case for the related regulatory protein XylR.
Resumo:
The mode of action of nuclear receptors in living cells is an actively investigated field but much remains hypothetical due to the lack, until recently, of methods allowing the assessment of molecular mechanisms in vivo. However, these last years, the development of fluorescence microscopy methods has allowed initiating the dissection of the molecular mechanisms underlying gene regulation by nuclear receptors directly in living cells or organisms. Following our analyses on peroxisome proliferator activated receptors (PPARs) in living cells, we discuss here the different models arising from the use of these tools, that attempt to link mobility, DNA binding or chromatin interaction, and transcriptional activity.
Resumo:
The expression of the 240 ConA-binding glycoprotein (240 kDa), a marker of synaptic junctions isolated from the rat cerebellum, was studied by immunocytochemical techniques in forebrain and cerebellum from rat and chicken, and in chick dorsal root ganglia. Parallel studies were carried out either on tissue sections or in dissociated cell cultures. In all cases non neuronal cells were not immunostained. The tissue sections of cerebellum from rat and chick exhibited 240 kDa glycoprotein immunoreactivity, especially in the molecular layer, while the forebrain sections from rat and chick did not show any significant immunostaining. In contrast, in dissociated forebrain cell cultures, all neuronal cells expressed 240 kDa glycoprotein immunoreactivity, while glial cells remained totally unlabelled. In tissue sections of dorsal root ganglion (DRG), sensory neurons expressed the 240 kDa only after the embryonic day (E 10). A large number of small neurons in the dorsomedial part of DRG were immunostained with 240 kDa glycoprotein antiserum, whereas only a small number of neurons in the ventrolateral part of the ganglia displayed 240 kDa immunoreactivity. In dissociated DRG cells cultures (mixed or neuron-enriched DRG cell cultures) all the neuronal perikarya but not their processes were stained. These studies indicate that 240 kDa glycoprotein expression is completely modified in cultures of neurons of CNS or PNS since the antigen becomes synthetized in high amount by all cells independent of synapse formation. This demonstrates that the expression of 240 kDa is controlled by the cell environment.
Resumo:
Purpose:NR2E3 (PNR) is an orphan nuclear receptor essential for proper photoreceptor determination and differentiation. In humans, mutations in NR2E3 have been associated with the recessively inherited enhanced short wavelength sensitive (S-) cone syndrome (ESCS) and, more recently, with autosomal dominant retinitis pigmentosa (adRP). NR2E3 acts in concert with the transcription factors Crx and Nrl to repress cone-specific genes and activate rod-specific genes. NR2E3 and Crx have been shown to physically interact by their DNA-binding domain (DBD), which may also be implicated in the dimerization process of the nuclear receptor. However, neither NR2E3 homodimerization nor NR2E3/Crx complex formation has been investigated in detail. Methods:In this present work, we analyzed the dimerization of the NR2E3 protein and its interaction with Crx by bioluminescence resonance energy transfer (BRET2) which utilizes Renilla luciferase (hRluc) protein and its substrate DeepBlueC as an energy donor and a mutant green fluorescent protein (GFP2) as the acceptor. We investigated, on whole intact cells, the role of NR2E3 DBD-mutations in dimerization and association with Crx. Results:We clearly showed that NR2E3 formed homodimers in HEK-293T cells. Moreover, all causative NR2E3 mutations present in the DBD of the protein showed an alteration in dimerization, except for the R76Q and the R104W mutants. Interestingly, the adRP-linked G56R mutant was the only DBD-NR2E3 mutant that showed a correct interaction with Crx. Finally, we observed a decrease in rhodospin gene transactivation for all DBD-NR2E3 mutants tested and no potentiation for the adRP-linked G56R mutant. In addition, the p.G56R mutant enhanced the transrepression of M-opsin promoter, while all other DBD-NR2E3 mutants did not repress M-opsin transactivation. Conclusions:A defect, either in the dimer formation or in the interaction of NR2E3 with Crx, leads to abnormal transcriptional activity on rhodopsin and M-opsin promoter and to an atypical retinal development; while the titration of Crx by p.G56R-NR2E3 leads to low levels of rhodopsin and M-opsin expression and may be responsible for the strong adRP phenotype.
Resumo:
LB11058 is a new synthetic cephalosporin with good affinity for staphylococcal penicillin-binding protein 2a (PBP2a). LB11058 was tested in vitro and in rats with experimental aortic endocarditis against three methicillin-resistant Staphylococcus aureus (MRSA) strains, one penicillinase-negative strain (strain COL), and two penicillinase-producing strains (COL-Bla+ and P8-Hom). The MICs of LB11058 for the organisms were 1 mg/liter. The MICs of vancomycin and ceftriaxone were 1 and >/=64 mg/liter, respectively. In population analysis profiles, none of the MRSA strains grew at >/=2 mg of LB11058/liter. Rats with endocarditis were treated for 5 days. LB11058 was highly bound to serum proteins in rats (>/=98%). However, binding was saturable above a threshold of 250 mg/liter. Therefore, continuous concentrations of 250 mg/liter in serum were infused to ensure a free fraction (>/=5 mg/liter) above the drug's MIC for the entire infusion period. Control treatments included simulation of human serum kinetics produced by intravenous vancomycin (1 g twice daily, free drug concentration above MIC, >/=90% of infusion period) or ceftriaxone (2 g/24 h, free drug concentrations above the MIC, 0% of infusion period). LB11058 successfully treated 10 of 10 (100%) and 13 of 14 (93%) of rats infected with COL-Bla+ and P8-Hom, respectively. This was comparable to vancomycin (sterilization of 8 of 12 [66%] and 6 of 8 [75%] rats, respectively). Ceftriaxone was inactive. Low concentrations of LB11058 (5 and 10 mg/liter, continuously infused) in serum were ineffective, as predicted by the pharmacodynamic parameters. At appropriate doses, LB11058 was highly effective both in vitro and in vivo. This finding supports the development of this beta-lactam with high PBP2a affinity for the treatment of MRSA infections.