393 resultados para Bcr-abl Mutants


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mutants were produced in the A-domain of HbpR, a protein belonging to the XylR family of σ(54)-dependent transcription activators, with the purpose of changing its effector recognition specificity from 2-hydroxybiphenyl (2-HBP, the cognate effector) to 2-chlorobiphenyl (2-CBP). Mutations were introduced in the hbpR gene part for the A-domain via error-prone polymerase chain reaction, and assembled on a gene circuitry plasmid in Escherichia coli, permitting HbpR-dependent induction of the enhanced green fluorescent protein (egfp). Cells with mutant HbpR proteins responsive to 2-CBP were enriched and separated in a flow cytometry-assisted cell-sorting procedure. Some 70 mutants were isolated and the A-domain mutations mapped. One of these had acquired true 2-CBP recognition but reacted hypersensitively to 2-HBP (20-fold more than the wild type), whereas others had reduced sensitivity to 2-HBP but a gain of 2-CBP recognition. Sequencing showed that most mutants carried double or triple mutations in the A-domain gene part, and were not located in previously recognized conserved residues within the XylR family members. Further selection from a new mutant pool prepared of the hypersensitive mutant did not result in increased 2-CBP or reduced 2-HBP recognition. Our data thus demonstrate that a one-step in vitro 'evolutionary' adaptation of the HbpR protein can result in both enhancement and reduction of the native effector recognition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epithelial Na(+) channel (ENaC)/degenerin family members are involved in mechanosensation, blood pressure control, pain sensation, and the expression of fear. Several of these channel types display a form of desensitization that allows the channel to limit Na(+) influx during prolonged stimulation. We used site-directed mutagenesis and chemical modification, functional analysis, and molecular dynamics simulations to investigate the role of the lower palm domain of the acid-sensing ion channel 1, a member of the ENaC/degenerin family. The lower palm domains of this trimeric channel are arranged around a central vestibule, at ∼20 Å above the plasma membrane and are covalently linked to the transmembrane channel parts. We show that the lower palm domains approach one another during desensitization. Residues in the palm co-determine the pH dependence of desensitization, its kinetics, and the stability of the desensitized state. Mutations of palm residues impair desensitization by preventing the closing movement of the palm. Overexpression of desensitization-impaired channel mutants in central neurons allowed--in contrast to overexpression of wild type--a sustained signaling response to rapid pH fluctuations. We identify and describe here the function of an important regulatory domain that most likely has a conserved role in ENaC/degenerin channels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Receptor activity modifying proteins RAMP1, RAMP2, and RAMP3 are responsible for defining affinity to ligands of the calcitonin receptor-like receptor (CRLR). It has also been proposed that receptor activity-modifying proteins (RAMP) are molecular chaperones required for CRLR transport to the cell surface. Here, we have studied the respective roles of CRLR and RAMP in transporting CRLR/RAMP heterodimers to the plasma membrane by using a highly specific binding assay that allows quantitative detection of cell surface-expressed CRLR or RAMP in the Xenopus oocytes expression system. We show that: (i) heterodimer assembly is not a prerequisite for efficient cell surface expression of CRLR, (ii) N-glycosylated RAMP2 and RAMP3 are expressed at the cell surface and their transport to the plasma membrane requires N-glycans, (iii) RAMP1 is not N-glycosylated and is transported to the plasma membrane only upon formation of heterodimers with CRLR, and (iv) introduction of N-glycosylation sites in the RAMP1 sequence (D58N/G60S, Y71N, and K103N/P105S) allows cell surface expression of these mutants at levels similar to that of wild-type RAMP1 co-expressed with CRLR. Our data argue against a chaperone function for RAMP and identify the role of N-glycosylation in targeting these molecules to the cell surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Integrin adhesion receptors consist of non-covalently linked alpha and beta subunits each of which contains a large extracellular domain, a single transmembrane domain and a short cytoplasmic tail. Engaged integrins recruit to focal structures globally termed adhesion complexes. The cytoplasmic domain of the beta subunit is essential for this clustering. beta1 and beta3 integrins can recruit at distinct cellular locations (i.e. fibrillar adhesions vs focal adhesions, respectively) but it is not clear whether individual beta subunit cytoplasmic and transmembrane domains are by themselves sufficient to drive orthotopic targeting to the cognate adhesion complex. To address this question, we expressed full-length beta3 transmembrane anchored cytoplasmic domains and truncated beta3 cytoplasmic domains as GFP-fusion constructs and monitored their localization in endothelial cells. Membrane-anchored full-length beta3 cytoplasmic domain and a beta3 mutant lacking the NXXY motif recruited to adhesion complexes, while beta3 mutants lacking the NPXY and NXXY motifs or the transmembrane domain did not. Replacing the natural beta subunit transmembrane domain with an unrelated (i.e. HLA-A2 alpha chain) transmembrane domain significantly reduced recruitment to adhesion complexes. Transmembrane anchored beta3 and cytoplasmic domain constructs, however, recruited without discrimination to beta1- and beta3-rich adhesions complexes. These findings demonstrate that membrane anchorage and the NPXY (but not the NXXY) motif are necessary for beta3 cytoplasmic domain recruitment to adhesion complexes and that the natural transmembrane domain actively contributes to this recruitment. The beta3 transmembrane and cytoplasmic domains alone are insufficient for orthotopic recruitment to cognate adhesion complexes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coagulation factor V (FV) deficiency is characterised by variable bleeding phenotypes and heterogeneous mutations. To add new insights into the FV genotype-phenotype relationship, we characterised the R1698W change in the A3 domain, at the poorly investigated interface with the A2 domain. The FV R1698W mutation was responsible for a markedly reduced expression level (10% of FV-WT) and specific activity in thrombin generation (0.39). Interestingly, the FVa1698W showed rapid activity decay upon activation due to increased dissociation rate between the heavy and light chains. The importance of the size and charge of the residue at position 1698 was investigated by three additional recombinant mutants, FVR1698A, FVR1698Q, and FVR1698E. FVR1698A and FVR1698Q expression (30 and 45% of FV-WT), specific activity (both 0.57) and stability were all reduced. Noticeably, FVR1698E showed normal activity and stability despite poor expression (10% of FV-WT). These data indicate the essential role of R1698 for normal biosynthetic process and support local flexibility for positively or negatively charged residues to produce stable and functional A3-A2 domain interactions. Their experimental alteration produces a gradient of FV defects, which help to interpret the wide spectrum of phenotypes in FV-deficient patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiple lines of evidence show that matrix metalloproteinases (MMPs) are involved in the peripheral neural system degenerative and regenerative processes. MMP-9 was suggested in particular to play a role in the peripheral nerve after injury or during Wallerian degeneration. Interestingly, our previous analysis of Lpin1 mutant mice (which present morphological signs of active demyelination and acute inflammatory cell migration, similar to processes present in the PNS undergoing Wallerian degeneration) revealed an accumulation of MMP-9 in the endoneurium of affected animals. We therefore generated a mouse line lacking both the Lpin1 and the MMP-9 genes in order to determine if MMP-9 plays a role in either inhibition or potentiation of the demyelinating phenotype present in Lpin1 knockout mice. The inactivation of MMP-9 alone did not lead to defects in PNS structure or function. Interestingly we observed that the double mutant animals showed reduced nerve conduction velocity, lower myelin protein mRNA expressions, and had more histological abnormalities as compared to the Lpin1 single mutants. In addition, based on immunohistochemical analysis and macrophage markers mRNA expression, we found a lower macrophage content in the sciatic nerve of the double mutant animals. Together our data indicate that MMP-9 plays a role in macrophage recruitment during postinjury PNS regeneration processes and suggest that slower macrophage infiltration delays regenerative processes in PNS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-molecular-weight (HMW) penicillin-binding proteins (PBPs) are divided into class A and class B PBPs, which are bifunctional transpeptidases/transglycosylases and monofunctional transpeptidases, respectively. We determined the sequences for the HMW PBP genes of Streptococcus gordonii, a gingivo-dental commensal related to Streptococcus pneumoniae. Five HMW PBPs were identified, including three class A (PBPs 1A, 1B, and 2A) and two class B (PBPs 2B and 2X) PBPs, by homology with those of S. pneumoniae and by radiolabeling with [3H]penicillin. Single and double deletions of each of them were achieved by allelic replacement. All could be deleted, except for PBP 2X, which was essential. Morphological alterations occurred after deletion of PBP 1A (lozenge shape), PBP 2A (separation defect and chaining), and PBP 2B (aberrant septation and premature lysis) but not PBP 1B. The muropeptide cross-link patterns remained similar in all strains, indicating that cross-linkage for one missing PBP could be replaced by others. However, PBP 1A mutants presented shorter glycan chains (by 30%) and a relative decrease (25%) in one monomer stem peptide. Growth rate and viability under aeration, hyperosmolarity, and penicillin exposure were affected primarily in PBP 2B-deleted mutants. In contrast, chain-forming PBP 2A-deleted mutants withstood better aeration, probably because they formed clusters that impaired oxygen diffusion. Double deletion could be generated with any PBP combination and resulted in more-altered mutants. Thus, single deletion of four of the five HMW genes had a detectable effect on the bacterial morphology and/or physiology, and only PBP 1B seemed redundant a priori.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wound responses in plants have to be coordinated between organs so that locally reduced growth in a wounded tissue is balanced by appropriate growth elsewhere in the body. We used a JASMONATE ZIM DOMAIN 10 (JAZ10) reporter to screen for mutants affected in the organ-specific activation of jasmonate (JA) signaling in Arabidopsis thaliana seedlings. Wounding one cotyledon activated the reporter in both aerial and root tissues, and this was either disrupted or restricted to certain organs in mutant alleles of core components of the JA pathway including COI1, OPR3, and JAR1. In contrast, three other mutants showed constitutive activation of the reporter in the roots and hypocotyls of unwounded seedlings. All three lines harbored mutations in Novel Interactor of JAZ (NINJA), which encodes part of a repressor complex that negatively regulates JA signaling. These ninja mutants displayed shorter roots mimicking JA-mediated growth inhibition, and this was due to reduced cell elongation. Remarkably, this phenotype and the constitutive JAZ10 expression were still observed in backgrounds lacking the ability to synthesize JA or the key transcriptional activator MYC2. Therefore, JA-like responses can be recapitulated in specific tissues without changing a plant's ability to make or perceive JA, and MYC2 either has no role or is not the only derepressed transcription factor in ninja mutants. Our results show that the role of NINJA in the root is to repress JA signaling and allow normal cell elongation. Furthermore, the regulation of the JA pathway differs between roots and aerial tissues at all levels, from JA biosynthesis to transcriptional activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The HbpR protein is the sigma54-dependent transcription activator for 2-hydroxybiphenyl degradation in Pseudomonas azelaica. The ability of HbpR and XylR, which share 35% amino acid sequence identity, to cross-activate the PhbpC and Pu promoters was investigated by determining HbpR- or XylR-mediated luciferase expression and by DNA binding assays. XylR measurably activated the PhbpC promoter in the presence of the effector m-xylene, both in Escherichia coli and Pseudomonas putida. HbpR weakly stimulated the Pu promoter in E. coli but not in P. azelaica. Poor HbpR-dependent activation from Pu was caused by a weak binding to the operator region. To create promoters efficiently activated by both regulators, the HbpR binding sites on PhbpC were gradually changed into the XylR binding sites of Pu by site-directed mutagenesis. Inducible luciferase expression from mutated promoters was tested in E. coli on a two plasmid system, and from mono copy gene fusions in P. azelaica and P. putida. Some mutants were efficiently activated by both HbpR and XylR, showing that promoters can be created which are permissive for both regulators. Others achieved a higher XylR-dependent transcription than from Pu itself. Mutants were also obtained which displayed a tenfold lower uninduced expression level by HbpR than the wild-type PhbpC, while keeping the same maximal induction level. On the basis of these results, a dual-responsive bioreporter strain of P. azelaica was created, containing both XylR and HbpR, and activating luciferase expression from the same single promoter independently with m-xylene and 2-hydroxybiphenyl.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Pseudomonas aeruginosa, cell-cell communication based on N-acyl-homoserine lactone (AHL) signal molecules (termed quorum sensing) is known to control the production of extracellular virulence factors. Hence, in pathogenic interactions with host organisms, the quorum-sensing (QS) machinery can confer a selective advantage on P. aeruginosa. However, as shown by transcriptomic and proteomic studies, many intracellular metabolic functions are also regulated by quorum sensing. Some of these serve to regenerate the AHL precursors methionine and S-adenosyl-methionine and to degrade adenosine via inosine and hypoxanthine. The fact that a significant percentage of clinical and environmental isolates of P. aeruginosa is defective for QS because of mutation in the major QS regulatory gene lasR, raises the question of whether the QS machinery can have a negative impact on the organism's fitness. In vitro, lasR mutants have a higher probability to escape lytic death in stationary phase under alkaline conditions than has the QS-proficient wild type. Similar selective forces might also operate in natural environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aquaporins (AQPs) are membrane channels belonging to the major intrinsic proteins family and are known for their ability to facilitate water movement. While in Populus trichocarpa, AQP proteins form a large family encompassing fifty-five genes, most of the experimental work focused on a few genes or subfamilies. The current work was undertaken to develop a comprehensive picture of the whole AQP gene family in Populus species by delineating gene expression domain and distinguishing responsiveness to developmental and environmental cues. Since duplication events amplified the poplar AQP family, we addressed the question of expression redundancy between gene duplicates. On these purposes, we carried a meta-analysis of all publicly available Affymetrix experiments. Our in-silico strategy controlled for previously identified biases in cross-species transcriptomics, a necessary step for any comparative transcriptomics based on multispecies design chips. Three poplar AQPs were not supported by any expression data, even in a large collection of situations (abiotic and biotic constraints, temporal oscillations and mutants). The expression of 11 AQPs was never or poorly regulated whatever the wideness of their expression domain and their expression level. Our work highlighted that PtTIP1;4 was the most responsive gene of the AQP family. A high functional divergence between gene duplicates was detected across species and in response to tested cues, except for the root-expressed PtTIP2;3/PtTIP2;4 pair exhibiting 80% convergent responses. Our meta-analysis assessed key features of aquaporin expression which had remained hidden in single experiments, such as expression wideness, response specificity and genotype and environment interactions. By consolidating expression profiles using independent experimental series, we showed that the large expansion of AQP family in poplar was accompanied with a strong divergence of gene expression, even if some cases of functional redundancy could be suspected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The QDR (quinidine drug resistance) family of genes encodes transporters belonging to the MFS (major facilitator superfamily) of proteins. We show that QDR transporters, which are localized to the plasma membrane, do not play a role in drug transport. Hence, null mutants of QDR1, QDR2 and QDR3 display no alterations in susceptibility to azoles, polyenes, echinocandins, polyamines or quinolines, or to cell wall inhibitors and many other stresses. However, the deletion of QDR genes, individually or collectively, led to defects in biofilm architecture and thickness. Interestingly, QDR-lacking strains also displayed attenuated virulence, but the strongest effect was observed with qdr2∆, qdr3∆ and in qdr1/2/3∆ strains. Notably, the attenuated virulence and biofilm defects could be reversed upon reintegration of QDR genes. Transcripts profiling confirmed differential expression of many biofilm and virulence-related genes in the deletion strains as compared with wild-type Candida albicans cells. Furthermore, lipidomic analysis of QDR-deletion mutants suggests massive remodelling of lipids, which may affect cell signalling, leading to the defect in biofilm development and attenuation of virulence. In summary, the results of the present study show that QDR paralogues encoding MFS antiporters do not display conserved functional linkage as drug transporters and perform functions that significantly affect the virulence of C. albicans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Pseudomonas aeruginosa, the GacS/GacA two-component system positively controls the quorum-sensing machinery and the expression of extracellular products via two small regulatory RNAs, RsmY and RsmZ. An rsmY rsmZ double mutant and a gacA mutant were similarly impaired in the synthesis of the quorum-sensing signal N-butanoyl-homoserine lactone, the disulfide bond-forming enzyme DsbA, and the exoproducts hydrogen cyanide, pyocyanin, elastase, chitinase (ChiC), and chitin-binding protein (CbpD). Both mutants showed increased swarming ability, azurin release, and early biofilm development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pseudomonas fluorescens are rhizobacteria known for their biocontrol properties. Several antimicrobial functions are crucial for this process, and the experiments described here investigate the modulation of their expression during the plant-bacterium interaction. The role of a LuxR family regulator in interkingdom signaling has been investigated using genome-scale transcriptome analysis, gene promoter studies in vivo and in vitro, biocontrol assays, and response to plant compounds. PsoR, a LuxR solo or orphan regulator of P. fluorescens, was identified. PsoR is solubilized and activates a lux-box-containing promoter only in the presence of macerated plants, suggesting the presence of a plant molecule(s) that most likely binds to PsoR. Gene expression profiles revealed that genes involved in the inhibition of plant pathogens were affected by PsoR, including a chitinase gene, iron metabolism genes, and biosynthetic genes of antifungal compounds. 2,4-Diacetylphloroglucinol production is PsoR dependent both in vitro and in vivo. psoR mutants were significantly reduced for their ability to protect wheat plants from root rot, and damping-off caused by Pythium ultimum infection. PsoR most likely senses a molecule(s) in the plant and modulates expression of genes that have a role in biocontrol. PsoR and related proteins form a subfamily of LuxR family regulators in plant-associated bacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phototropic hypocotyl bending in response to blue light excitation is an important adaptive process that helps plants to optimize their exposure to light. In Arabidopsis thaliana, phototropic hypocotyl bending is initiated by the blue light receptors and protein kinases phototropin1 (phot1) and phot2. Phototropic responses also require auxin transport and were shown to be partially compromised in mutants of the PIN-FORMED (PIN) auxin efflux facilitators. We previously described the D6 PROTEIN KINASE (D6PK) subfamily of AGCVIII kinases, which we proposed to directly regulate PIN-mediated auxin transport. Here, we show that phototropic hypocotyl bending is strongly dependent on the activity of D6PKs and the PIN proteins PIN3, PIN4, and PIN7. While early blue light and phot-dependent signaling events are not affected by the loss of D6PKs, we detect a gradual loss of PIN3 phosphorylation in d6pk mutants of increasing complexity that is most severe in the d6pk d6pkl1 d6pkl2 d6pkl3 quadruple mutant. This is accompanied by a reduction of basipetal auxin transport in the hypocotyls of d6pk as well as in pin mutants. Based on our data, we propose that D6PK-dependent PIN regulation promotes auxin transport and that auxin transport in the hypocotyl is a prerequisite for phot1-dependent hypocotyl bending.