392 resultados para ACTIVATED CATION CURRENT
Resumo:
Elevated low-density lipoprotein (LDL) levels induce activation of the p38 mitogen-activated protein kinase (MAPK), a stress-activated protein kinase potentially participating in the development of atherosclerosis. The nature of the lipoprotein components inducing p38 MAPK activation has remained unclear however. We show here that both LDLs and high-density lipoproteins (HDLs) have the ability to stimulate the p38 MAPKs with potencies that correlate with their cholesterol content. Cholesterol solubilized in methyl-beta-cyclodextrin was sufficient to activate the p38 MAPK pathway. Liposomes made of phosphatidylcholine (PC) or sphingomyelin, the two main phospholipids found in lipoproteins, were unable to stimulate the p38 MAPKs. In contrast, PC liposomes loaded with cholesterol potently activated this pathway. Reducing the cholesterol content of LDL particles lowered their ability to activate the p38 MAPKs. Cell lines representative of the three main cell types found in blood vessels (endothelial cells, smooth muscle cells and fibroblasts) all activated their p38 MAPK pathway in response to LDLs or cholesterol-loaded PC liposomes. These results indicate that elevated cholesterol content in lipoproteins, as seen in hypercholesterolemia, favors the activation of the stress-activated p38 MAPK pathway in cells from the vessel wall, an event that might contribute to the development of atherosclerosis.
Resumo:
AMP-activated protein kinase (AMPK) is a major therapeutic target for the treatment of diabetes. We investigated the effect of a short-term overexpression of AMPK specifically in the liver by adenovirus-mediated transfer of a gene encoding a constitutively active form of AMPKalpha2 (AMPKalpha2-CA). Hepatic AMPKalpha2-CA expression significantly decreased blood glucose levels and gluconeogenic gene expression. Hepatic expression of AMPKalpha2-CA in streptozotocin-induced and ob/ob diabetic mice abolished hyperglycemia and decreased gluconeogenic gene expression. In normal mouse liver, AMPKalpha2-CA considerably decreased the refeeding-induced transcriptional activation of genes encoding proteins involved in glycolysis and lipogenesis and their upstream regulators, SREBP-1 (sterol regulatory element-binding protein-1) and ChREBP (carbohydrate response element-binding protein). This resulted in decreases in hepatic glycogen synthesis and circulating lipid levels. Surprisingly, despite the inhibition of hepatic lipogenesis, expression of AMPKalpha2-CA led to fatty liver due to the accumulation of lipids released from adipose tissue. The relative scarcity of glucose due to AMPKalpha2-CA expression led to an increase in hepatic fatty acid oxidation and ketone bodies production as an alternative source of energy for peripheral tissues. Thus, short-term AMPK activation in the liver reduces blood glucose levels and results in a switch from glucose to fatty acid utilization to supply energy needs.
Resumo:
The recently discovered epithelial sodium channel (ENaC)/degenerin (DEG) gene family encodes sodium channels involved in various cell functions in metazoans. Subfamilies found in invertebrates or mammals are functionally distinct. The degenerins in Caenorhabditis elegans participate in mechanotransduction in neuronal cells, FaNaC in snails is a ligand-gated channel activated by neuropeptides, and the Drosophila subfamily is expressed in gonads and neurons. In mammals, ENaC mediates Na+ transport in epithelia and is essential for sodium homeostasis. The ASIC genes encode proton-gated cation channels in both the central and peripheral nervous system that could be involved in pain transduction. This review summarizes the physiological roles of the different channels belonging to this family, their biophysical and pharmacological characteristics, and the emerging knowledge of their molecular structure. Although functionally different, the ENaC/DEG family members share functional domains that are involved in the control of channel activity and in the formation of the pore. The functional heterogeneity among the members of the ENaC/DEG channel family provides a unique opportunity to address the molecular basis of basic channel functions such as activation by ligands, mechanotransduction, ionic selectivity, or block by pharmacological ligands.
Resumo:
The nuclear hormone receptors called PPARs (peroxisome proliferator-activated receptors alpha, beta, and gamma) regulate the peroxisomal beta-oxidation of fatty acids by induction of the acyl-CoA oxidase gene that encodes the rate-limiting enzyme of the pathway. Gel retardation and cotransfection assays revealed that PPAR alpha heterodimerizes with retinoid X receptor beta (RXR beta; RXR is the receptor for 9-cis-retinoic acid) and that the two receptors cooperate for the activation of the acyl-CoA oxidase gene promoter. The strongest stimulation of this promoter was obtained when both receptors were exposed simultaneously to their cognate activators. Furthermore, we show that natural fatty acids, and especially polyunsaturated fatty acids, activate PPARs as potently as does the hypolipidemic drug Wy 14,643, the most effective activator known so far. Moreover, we discovered that the synthetic arachidonic acid analogue 5,8,11,14-eicosatetraynoic acid is 100 times more effective than Wy 14,643 in the activation of PPAR alpha. In conclusion, our data demonstrate a convergence of the PPAR and RXR signaling pathways in the regulation of the peroxisomal beta-oxidation of fatty acids by fatty acids and retinoids.
Resumo:
A current paradigm proposes that mitochondrial damage is a critical determinant of NLRP3 inflammasome activation. Here, we genetically assess whether mitochondrial signalling represents a unified mechanism to explain how NLRP3 is activated by divergent stimuli. Neither co-deletion of the essential executioners of mitochondrial apoptosis BAK and BAX, nor removal of the mitochondrial permeability transition pore component cyclophilin D, nor loss of the mitophagy regulator Parkin, nor deficiency in MAVS affects NLRP3 inflammasome function. In contrast, caspase-8, a caspase essential for death-receptor-mediated apoptosis, is required for efficient Toll-like-receptor-induced inflammasome priming and cytokine production. Collectively, these results demonstrate that mitochondrial apoptosis is not required for NLRP3 activation, and highlight an important non-apoptotic role for caspase-8 in regulating inflammasome activation and pro-inflammatory cytokine levels.
Resumo:
As expression of Cxs in cells of the immune system increases upon cellular activation, we investigated whether Cxs and especially CxHcs play a major role during T cell-mediated responses. In particular, we studied the expression of Cx43Hc following CD4(+) T cell stimulation using flow cytometry, real-time PCR, and Western blot analysis. We showed that expression of Cx43 and its phosphorylated isoforms increased in response to the engagement of CD3 and CD28. Cx43Hcs were found to be involved in sustaining proliferation of T cells, as assessed by cell cycle staining, thymidine incorporation assays, and CFSE analysis of cells exposed to mimetic peptide inhibitors of the plasma membrane Cx channels and antibodies generated to an extracellular region of Cx. The reduction of T cell proliferation mediated by Cx channel inhibitors suppressed cysteine uptake but not cytokine production. We conclude that upon antigen recognition, T cells require CxHc to sustain their clonal expansion.
Resumo:
Objectives: The study aims to assess the feasibility and midterm outcome of trans-peritoneal laparoscopy for coeliac artery compression syndrome (CACS).Design: Retrospective chart review involving four European vascular surgery departments and two surgical teams.Materials and methods: charts for patients who underwent laparoscopy for symptomatic CACS between December 2003 and November 2009 were reviewed. Preoperative computed tomography (CT) angiography and postoperative duplex scan and/or CT angiography were performed.Results: Eleven consecutive patients (nine women) with a median age of 52 years (interquartile range: 42.5-59 years) underwent trans-peritoneal laparoscopy for CACS. All patients had a history of postprandial abdominal pain; weight loss exceeded 10% of the body mass in eight cases. Preoperative CT angiography revealed coeliac trunk stenosis >70% in all cases. One patient had additional aortitis and inferior mesenteric artery occlusion, while another patient presented with an occluded superior mesenteric artery. Two conversions occurred (one difficult dissection and one aorto-hepatic bypass needed for incomplete release of CACS). The median blood loss was 195 ml (range: 50-900 ml) and median operative time was 80 min (interquartile range: 65-162.5 years). Symptoms improved immediately in 10/11 patients (no residual stenosis) while one remained unchanged despite a residual stenosis treated by a percutaneous angioplasty. Symptoms reappeared in one patient due to coeliac axis occlusion. The mean follow-up period was 35 +/- 23 months (range: 12-78 months).Conclusion: Our study demonstrates that trans-peritoneal laparoscopy for treating median arcuate ligament syndrome is safe and feasible. Additional patients and a longer follow-up are needed for long-term assessment of this laparoscopic technique. (C) 2011 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.
Resumo:
Treatment of colonic diverticular disease has evolved over the past years. Most episodes are simple and can be successfully treated with antibiotics alone. For complicated diverticulitis, a strong trend is developing towards less invasive therapies including interventional radiology and laparoscopic lavage in an effort to avoid the morbidity and discomfort of a diverting colostomy. Based on a better understanding of the natural history of the disease, the indication to prophylactic colectomy after a few episodes of simple diverticulitis has been seriously challenged. For those patients who need a colectomy, single port laparoscopy, NOTES and transanal specimen extraction are being proposed. However larger studies are needed to confirm the hypothetical advantages of these evolving techniques.
Resumo:
BACKGROUND: Neuropsychological deficits (NPD) are common in patients with aneurysmal subarachnoid haemorrhage (aSAH). NPD are one of the major limiting factors for patients with an otherwise acceptable prognosis for sustained quality of life. There are only a few studies reporting outcome after aSAH, which used a standardized neuropsychological test battery as a primary or secondary outcome measure. Aim of this study was to determine the current practice of reporting NPD following aSAH in clinical studies. METHODS: A MEDLINE analysis was performed using the search term "subarachnoid haemorrhage outcome". The latest 1,000 articles were screened. We recorded study design, number of patients, and the presence of neuropsychological outcome report. Additionally, the time of testing after aSAH, the neuropsychological tests administered, as well as the percentage of patients with NPD were analyzed. RESULTS: A total of 324 publications between 2009 and 2012 were selected for further review. Of those, 21 studies (6.5%) reported neuropsychological outcome, in 2,001 of 346,666 patients (0.6%). The assessment of NPD differed broadly using both subjective and objective cognitive evaluation, and a large variety of tests were used. CONCLUSION: Neuropsychological outcome is underreported, and there is great variety in assessment in currently published clinical articles on aSAH. Prospective randomized trials treating aSAH may benefit from implementing more comprehensive and standardized neuropsychological outcome measures. This approach might identify otherwise unnoticed treatment effects in future interventional studies of aSAH patients.
Resumo:
The PPARs (peroxisome-proliferator-activated receptors) alpha, beta/delta and gamma belong to the nuclear hormone receptor superfamily. While all three receptors are undetectable in adult mouse interfollicular epidermis, PPARbeta expression and activity is strongly re-activated by inflammatory stimuli during epidermal injury. The pro-inflammatory cytokine TNFalpha (tumour necrosis factor alpha) stimulates transcription of the PPARbeta gene via an activator protein-1 site in its promoter and it also triggers the production of PPARbeta ligands in keratinocytes. This increase of PPARbeta activity in these cells up-regulates the expression of integrin-linked kinase and 3-phosphoinositide-dependent kinase-1, which phosphorylates protein kinase B-alpha (Akt1). The resulting increase in Akt1 activity suppresses apoptosis and ensures the presence of a sufficient number of viable keratinocytes at the wound margin for re-epithelialization. Together, these observations reveal that PPARbeta takes on multiple roles and contributes favourably to the process of wound closure.
Resumo:
Hepatitis C virus (HCV) infection induces the endogenous interferon (IFN) system in the liver in some but not all patients with chronic hepatitis C (CHC). Patients with a pre-activated IFN system are less likely to respond to the current standard therapy with pegylated IFN-alpha. Mitochondrial antiviral signaling protein (MAVS) is an important adaptor molecule in a signal transduction pathway that senses viral infections and transcriptionally activates IFN-beta. The HCV NS3-4A protease can cleave and thereby inactivate MAVS in vitro, and, therefore, might be crucial in determining the activation status of the IFN system in the liver of infected patients. We analyzed liver biopsies from 129 patients with CHC to investigate whether MAVS is cleaved in vivo and whether cleavage prevents the induction of the endogenous IFN system. Cleavage of MAVS was detected in 62 of the 129 samples (48%) and was more extensive in patients with a high HCV viral load. MAVS was cleaved by all HCV genotypes (GTs), but more efficiently by GTs 2 and 3 than by GTs 1 and 4. The IFN-induced Janus kinase (Jak)-signal transducer and activator of transcription protein (STAT) pathway was less frequently activated in patients with cleaved MAVS, and there was a significant inverse correlation between cleavage of MAVS and the expression level of the IFN-stimulated genes IFI44L, Viperin, IFI27, USP18, and STAT1. We conclude that the pre-activation status of the endogenous IFN system in the liver of patients with CHC is in part regulated by cleavage of MAVS.