355 resultados para serine lipidic metabolism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two related and significant issues may elicit perplexity in medicinal chemists and are discussed here. First, a broad presentation of the pharmacological and toxicological consequences of drug metabolism should justify the significance of drug metabolism and serve as an incentive to further study. When comparing the pharmacological activities of a drug and its metabolite(s), a continuum is found which ranges from soft drugs (no active metabolites) to prodrugs (inactive per se, as illustrated here with clopidogrel and prasugrel). Innumerable intermediate cases document drugs whose activity is shared by one or more metabolites, as exemplified with tamoxifen. The toxicological consequences of metabolism at the molecular, macromolecular, and macroscopic levels are manyfold. A brief overview is offered together with a summary of the reactions of toxification and detoxification of the antiepileptic valproic acid. The second issue discussed in the review is a comparison of the relative significance of cytochromes P450 and other oxidoreductases (EC 1), hydrolases (EC 3), and transferases (EC 2) in drug metabolism, based on a 'guesstimate' of the number of drug metabolites that are known to be produced by them. The conclusion is that oxidoreductases are the main enzymes responsible for the formation of toxic or active metabolites, whereas transferases play the major role in producing inactive and nontoxic metabolites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The serine-threonine kinase LKB1 regulates cell polarity from Caenorhabditis elegans to man. Loss of lkb1 leads to a cancer predisposition, known as Peutz-Jeghers Syndrome. Biochemical analysis indicates that LKB1 can phosphorylate and activate a family of AMPK- like kinases, however, the precise contribution of these kinases to the establishment and maintenance of cell polarity is still unclear. Recent studies propose that LKB1 acts primarily through the AMP kinase to establish and/or maintain cell polarity. To determine whether this simple model of how LKB1 regulates cell polarity has relevance to complex tissues, we examined lkb1 mutants in the Drosophila eye. We show that adherens junctions expand and apical, junctional, and basolateral domains mix in lkb1 mutants. Surprisingly, we find LKB1 does not act primarily through AMPK to regulate cell polarity in the retina. Unlike lkb1 mutants, ampk retinas do not show elongated rhabdomeres or expansion of apical and junctional markers into the basolateral domain. In addition, nutrient deprivation does not reveal a more dramatic polarity phenotype in lkb1 photoreceptors. These data suggest that AMPK is not the primary target of LKB1 during eye development. Instead, we find that a number of other AMPK-like kinase, such as SIK, NUAK, Par-1, KP78a, and KP78b show phenotypes similar to weak lkb1 loss of function in the eye. These data suggest that in complex tissues, LKB1 acts on an array of targets to regulate cell polarity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resting metabolic rate was measured in 10 healthy volunteers (25 yr, 73 kg, 182 cm) for 1 h before and 4 h during intravenous (iv) fructose administration (20% at 50 mumol.kg-1.min-1) with (+P) or without (-P) propranolol (100 micrograms/kg, 1 microgram.kg-1.min-1) during the last 2 h. Some subjects were studied a further 2 h with fructose infusion and +P or -P in hyperinsulinemic (2.9 pmol.kg-1.min-1) euglycemic conditions. Glucose turnover ([3-3H]glucose, 20 muCi bolus and 0.2 muCi/min) was calculated over 30 min at 0, 2, 4, and 6 h. The thermic effect of iv fructose was approximately 7.5% and decreased to 4.9 +/- 0.4% (P less than 0.01) +P. During the euglycemic clamp the thermic effect was 6.2 +/- 0.9% (-P) and 5.3 +/- 0.9% (+P). Hepatic glucose production (HGP) was 11.7 mumol.kg-1.min-1 (0 h) and did not change after 2 h iv fructose (11.8 +/- 0.5 and 9.8 +/- 0.6 mumol.kg-1.min-1 -P and +P, respectively) but increased to 13.8 +/- 0.9 (-P) and 12.9 +/- 0.8 mumol.kg-1.min-1 (+P) (P less than 0.01) after 4 h. HGP was suppressed to varying degrees during the euglycemic clamp. It is concluded that 1) the greater thermic effect of fructose compared with glucose is probably due to continued gluconeogenesis (which is suppressed by glucose or glucose-insulin) and the energy cost of fructose metabolism to glucose in the liver. 2) There is a sympathetically mediated component to the thermic effect of fructose (approximately 30%) that is not mediated by elevated plasma insulin concentrations similar to those observed with iv glucose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methylmalonyl-CoA mutase (MCM) and propionyl-CoA carboxylase (PCC) are the key enzymes of the catabolic pathway of propionate metabolism and are mainly expressed in liver, kidney and heart. Deficiency of these enzymes leads to two classical organic acidurias: methylmalonic and propionic aciduria. Patients with these diseases suffer from a whole spectrum of neurological manifestations that are limiting their quality of life. Current treatment does not seem to effectively prevent neurological deterioration and pathophysiological mechanisms are poorly understood. In this article we show evidence for the expression of the catabolic pathway of propionate metabolism in the developing and adult rat CNS. Both, MCM and PCC enzymes are co-expressed in neurons and found in all regions of the CNS. Disease-specific metabolites such as methylmalonate, propionyl-CoA and 2-methylcitrate could thus be formed autonomously in the CNS and contribute to the pathophysiological mechanisms of neurotoxicity. In rat embryos (E15.5 and E18.5), MCM and PCC show a much higher expression level in the entire CNS than in the liver, suggesting a different, but important function of this pathway during brain development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Substantial evidence supports a role for myocyte enhancer factor 2 (MEF2)-mediated transcription in neuronal survival, differentiation and synaptic function. In developing neurons, it has been shown that MEF2-dependent transcription is regulated by neurotrophins. Despite these observations, little is known about the cellular mechanisms by which neurotrophins activate MEF2 transcriptional activity. In this study, we examined the role of salt-inducible kinase 1 (SIK1), a member of the AMP-activated protein kinase (AMPK) family, in the regulation of MEF2-mediated transcription by the neurotrophin brain-derived neurotrophic factor (BDNF). We show that BDNF increases the expression of SIK1 in primary cultures of rat cortical neurons through the extracellular signal-regulated kinase 1/2 (ERK1/2)-signaling pathway. In addition to inducing SIK1 expression, BDNF triggers the phosphorylation of SIK1 at Thr182 and its translocation from the cytoplasm to the nucleus of cortical neurons. The effects of BDNF on the expression, phosphorylation and, translocation of SIK1 are followed by the phosphorylation and nuclear export of histone deacetylase 5 (HDAC5). Blockade of SIK activity with a low concentration of staurosporine abolished BDNF-induced phosphorylation and nuclear export of HDAC5 in cortical neurons. Importantly, stimulation of HDAC5 phosphorylation and nuclear export by BDNF is accompanied by the activation of MEF2-mediated transcription, an effect that is suppressed by staurosporine. Consistent with these data, BDNF induces the expression of the MEF2 target genes Arc and Nur77, in a staurosporine-sensitive manner. In further support of the role of SIK1 in the regulation of MEF2-dependent transcription by BDNF, we found that expression of wild-type SIK1 or S577A SIK1, a mutated form of SIK1 which is retained in the nucleus of transfected cells, is sufficient to enhance MEF2 transcriptional activity in cortical neurons. Together, these data identify a previously unrecognized mechanism by which SIK1 mediates the activation of MEF2-dependent transcription by BDNF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glycogen is a hallmark of mature astrocytes, but its emergence during astrocytic differentiation is unclear. Differentiation of E14 mouse neurospheres into astrocytes was induced with fetal bovine serum (FBS), Leukemia Inhibitory Factor (LIF), or Ciliary Neurotrophic Factor (CNTF). Cytochemical and enzymatic analyses showed that glycogen is present in FBS- or LIF- but not in CNTF-differentiated astrocytes. Glycogenolysis was induced in FBS- and LIF-differentiated astrocytes but glycogen resynthesis was observed only with FBS. Protein targeting to glycogen mRNA expression appeared with glial fibrillary acidic protein and S100beta in FBS and LIF conditions but not with CNTF. These results show that glycogen metabolism constitutes a useful marker of astrocyte differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: INTRODUCTION: Hyperlactatemia represents one prominent component of the metabolic response to sepsis. In critically ill patients, hyperlactatemia is related to the severity of the underlying condition. Both an increased production and a decreased utilization and clearance might be involved in this process, but their relative contribution remains unknown. The present study aimed at assessing systemic and muscle lactate production and systemic lactate clearance in healthy human volunteers, using intravenous endotoxin (LPS) challenge. METHODS: Fourteen healthy male volunteers were enrolled in 2 consecutive studies (n = 6 in trial 1 and n = 8 in trial 2). Each subject took part in one of two investigation days (LPS-day with endotoxin injection and placebo-day with saline injection) separated by one week at least and in a random order. In trial 1, their muscle lactate metabolism was monitored using microdialysis. In trial 2, their systemic lactate metabolism was monitored by means of a constant infusion of exogenous lactate. Energy metabolism was monitored by indirect calorimetry and glucose kinetics was measured with 6,6-H2 glucose. RESULTS: In both trials, LPS increased energy expenditure (p = 0.011), lipid oxidation (p<0.0001), and plasma lactate concentration (p = 0.016). In trial 1, lactate concentration in the muscle microdialysate was higher than in blood, indicating lactate production by muscles. This was, however, similar with and without LPS. In trial 2, calculated systemic lactate production increased after LPS (p = 0.031), while lactate clearance remained unchanged. CONCLUSIONS: LPS administration increases lactatemia by increasing lactate production rather than by decreasing lactate clearance. Muscle is, however, unlikely to be a major contributor to this increase in lactate production. TRIAL REGISTRATION: ClinicalTrials.gov NCT01647997.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to investigate the synergistic effects of endurance training and hypoxia on endurance performance in normoxic and hypoxic conditions (approximately 3000 m above sea level) as well as on lactate and glucose metabolism during prolonged exercise. For this purpose, 14 well-trained cyclists performed 12 training sessions in conditions of normobaric hypoxia (HYP group, n = 7) or normoxia (NOR group, n = 7) over 4 weeks. Before and after training, lactate and glucose turnover rates were measured by infusion of exogenous lactate and stable isotope tracers. Endurance performance was assessed during incremental tests performed in normoxia and hypoxia and a 40 km time trial performed in normoxia. After training, performance was similarly and significantly improved in the NOR and HYP groups (training, P < 0.001) in normoxic conditions. No further effect of hypoxic training was found on markers of endurance performance in hypoxia (training x hypoxia interaction, n.s.). In addition, training and hypoxia had no significant effect on lactate turnover rate. In contrast, there was a significant interaction of training and hypoxia (P < 0.05) on glucose metabolism, as follows: plasma insulin and glucose concentrations were significantly increased; glucose metabolic clearance rate was decreased; and the insulin to glucagon ratio was increased after training in the HYP group. In conclusion, our results show that, compared with training in normoxia, training in hypoxia has no further effect on endurance performance in both normoxic and hypoxic conditions or on lactate metabolic clearance rate. Additionally, these findings suggest that training in hypoxia impairs blood glucose regulation in endurance-trained subjects during exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cul3 (Cullin3)-based E3 ubiquitin ligases recently emerged as critical regulators of mitosis. In this study, we identify two mammalian BTB (Bric-a-brac-Tramtrack-Broad complex)-Kelch proteins, KLHL21 and KLHL22, that interact with Cul3 and are required for efficient chromosome alignment. Interestingly, KLHL21 but not KLHL22 is necessary for cytokinesis and regulates translocation of the chromosomal passenger complex (CPC) from chromosomes to the spindle midzone in anaphase, similar to the previously described BTB-Kelch proteins KLHL9 and KLHL13. KLHL21 directly binds to aurora B and mediates ubiquitination of aurora B in vitro. In contrast to KLHL9 and KLHL13, KLHL21 localizes to midzone microtubules in anaphase and recruits aurora B and Cul3 to this region. Together, our results suggest that different Cul3 adaptors nonredundantly regulate aurora B during mitosis, possibly by ubiquitinating different pools of aurora B at distinct subcellular localizations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mammalian circadian clock plays a fundamental role in the liver by regulating fatty acid, glucose, and xenobiotic metabolism. Impairment of this rhythm has been shown to lead to diverse pathologies, including metabolic syndrome. Currently, it is supposed that the circadian clock regulates metabolism mostly by regulating expression of liver enzymes at the transcriptional level. Here, we show that the circadian clock also controls hepatic metabolism by synchronizing a secondary 12 hr period rhythm characterized by rhythmic activation of the IRE1alpha pathway in the endoplasmic reticulum. The absence of circadian clock perturbs this secondary clock and provokes deregulation of endoplasmic reticulum-localized enzymes. This leads to impaired lipid metabolism, resulting in aberrant activation of the sterol-regulated SREBP transcription factors. The resulting aberrant circadian lipid metabolism in mice devoid of the circadian clock could be involved in the appearance of the associated metabolic syndrome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adiponutrin (PNPLA3) is a predominantly liver-expressed transmembrane protein with phospholipase activity that is regulated by fasting and feeding. Recent genome-wide association studies identified PNPLA3 to be associated with hepatic fat content and liver function, thus pointing to a possible involvement in the hepatic lipoprotein metabolism. The aim of this study was to examine the association between two common variants in the adiponutrin gene and parameters of lipoprotein metabolism in 23,274 participants from eight independent West-Eurasian study populations including six population-based studies [Bruneck (n = 800), KORA S3/F3 (n = 1644), KORA S4/F4 (n = 1814), CoLaus (n = 5435), SHIP (n = 4012), Rotterdam (n = 5967)], the SAPHIR Study as a healthy working population (n = 1738) and the Utah Obesity Case-Control Study including a group of 1037 severely obese individuals (average BMI 46 kg/m2) and 827 controls from the same geographical region of Utah. We observed a strong additive association of a common non-synonymous variant within adiponutrin (rs738409) with age-, gender-, and alanine-aminotransferase-adjusted lipoprotein concentrations: each copy of the minor allele decreased levels of total cholesterol on average by 2.43 mg/dl (P = 8.87 x 10(-7)), non-HDL cholesterol levels by 2.35 mg/dl (P = 2.27 x 10(-6)) and LDL cholesterol levels by 1.48 mg/dl (P = 7.99 x 10(-4)). These associations remained significant after correction for multiple testing. We did not observe clear evidence for associations with HDL cholesterol or triglyceride concentrations. In conclusion, our study suggests that adiponutrin is involved in the metabolism of apoB-containing lipoproteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metabolites from intestinal microbiota are key determinants of host-microbe mutualism and, consequently, the health or disease of the intestinal tract. However, whether such host-microbe crosstalk influences inflammation in peripheral tissues, such as the lung, is poorly understood. We found that dietary fermentable fiber content changed the composition of the gut and lung microbiota, in particular by altering the ratio of Firmicutes to Bacteroidetes. The gut microbiota metabolized the fiber, consequently increasing the concentration of circulating short-chain fatty acids (SCFAs). Mice fed a high-fiber diet had increased circulating levels of SCFAs and were protected against allergic inflammation in the lung, whereas a low-fiber diet decreased levels of SCFAs and increased allergic airway disease. Treatment of mice with the SCFA propionate led to alterations in bone marrow hematopoiesis that were characterized by enhanced generation of macrophage and dendritic cell (DC) precursors and subsequent seeding of the lungs by DCs with high phagocytic capacity but an impaired ability to promote T helper type 2 (TH2) cell effector function. The effects of propionate on allergic inflammation were dependent on G protein-coupled receptor 41 (GPR41, also called free fatty acid receptor 3 or FFAR3), but not GPR43 (also called free fatty acid receptor 2 or FFAR2). Our results show that dietary fermentable fiber and SCFAs can shape the immunological environment in the lung and influence the severity of allergic inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bcl10 plays an essential role in the adaptive immune response, because Bcl10-deficient lymphocytes show impaired Ag receptor-induced NF-kappaB activation and cytokine production. Bcl10 is a phosphoprotein, but the physiological relevance of this posttranslational modification remains poorly defined. In this study, we report that Bcl10 is rapidly phosphorylated upon activation of human T cells by PMA/ionomycin- or anti-CD3 treatment, and identify Ser(138) as a key residue necessary for Bcl10 phosphorylation. We also show that a phosphorylation-deficient Ser(138)/Ala mutant specifically inhibits TCR-induced actin polymerization yet does not affect NF-kappaB activation. Moreover, silencing of Bcl10, but not of caspase recruitment domain-containing MAGUK protein-1 (Carma1) induces a clear defect in TCR-induced F-actin formation, cell spreading, and conjugate formation. Remarkably, Bcl10 silencing also impairs FcgammaR-induced actin polymerization and phagocytosis in human monocytes. These results point to a key role of Bcl10 in F-actin-dependent immune responses of T cells and monocytes/macrophages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The human herpes simplex virus (HSV) host cell factor HCF-1 is a transcriptional coregulator that associates with both histone methyl- and acetyltransferases, and a histone deacetylase and regulates cell proliferation and division. In HSV-infected cells, HCF-1 associates with the viral protein VP16 to promote formation of a multiprotein-DNA transcriptional activator complex. The ability of HCF proteins to stabilize this VP16-induced complex has been conserved in diverse animal species including Drosophila melanogaster and Caenorhabditis elegans suggesting that VP16 targets a conserved cellular function of HCF-1. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the role of HCF proteins in animal development, we have characterized the effects of loss of the HCF-1 homolog in C. elegans, called Ce HCF-1. Two large hcf-1 deletion mutants (pk924 and ok559) are viable but display reduced fertility. Loss of Ce HCF-1 protein at reduced temperatures (e.g., 12 degrees C), however, leads to a high incidence of embryonic lethality and early embryonic mitotic and cytokinetic defects reminiscent of mammalian cell-division defects upon loss of HCF-1 function. Even when viable, however, at normal temperature, mutant embryos display reduced levels of phospho-histone H3 serine 10 (H3S10P), a modification implicated in both transcriptional and mitotic regulation. Mammalian cells with defective HCF-1 also display defects in mitotic H3S10P status. CONCLUSIONS/SIGNIFICANCE: These results suggest that HCF-1 proteins possess conserved roles in the regulation of cell division and mitotic histone phosphorylation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The epithelial Na+ channel (ENaC) belongs to a new class of channel proteins called the ENaC/DEG superfamily involved in epithelial Na+ transport, mechanotransduction, and neurotransmission. The role of ENaC in Na+ homeostasis and in the control of blood pressure has been demonstrated recently by the identification of mutations in ENaC beta and gamma subunits causing hypertension. The function of ENaC in Na+ reabsorption depends critically on its ability to discriminate between Na+ and other ions like K+ or Ca2+. ENaC is virtually impermeant to K+ ions, and the molecular basis for its high ionic selectivity is largely unknown. We have identified a conserved Ser residue in the second transmembrane domain of the ENaC alpha subunit (alphaS589), which when mutated allows larger ions such as K+, Rb+, Cs+, and divalent cations to pass through the channel. The relative ion permeability of each of the alphaS589 mutants is related inversely to the ionic radius of the permeant ion, indicating that alphaS589 mutations increase the molecular cutoff of the channel by modifying the pore geometry at the selectivity filter. Proper geometry of the pore is required to tightly accommodate Na+ and Li+ ions and to exclude larger cations. We provide evidence that ENaC discriminates between cations mainly on the basis of their size and the energy of dehydration.