249 resultados para retrodirective array


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary : Four distinct olfactory subsystems compose the mouse olfactory system, the main olfactory epithelium (MOE), the septal organ of Masera (SO), the vomeronasal organ (VNO) and the Grueneberg ganglion (GG). They are implicated in the sensory modalities of the animal and they evolved to analyse and discriminate molecules carrying chemical messages, such as odorants and pheromones. In this thesis, the VNO, principally implicated in pheromonal communications as well as the GG, which had no function attributed until this work, were investigated from their morphology to their physiological functions, using an array of biochemical and physiological methods. First, the roles of a particular protein, the CNGA4 ion channel, were investigated in the VNO. In the MOE, CNGA4 is expressed as a modulatory channel subunit implicated in odour discrimination and adaptation. Interestingly, this calcium channel is the unique member of the cyclic nucleotide-gated (CNG) family to be expressed in the VNO and up to this work its functions remained unknown. Using a combination of transgenic and knockout mice, as well as histological and physiological approaches, we have characterized CNGA4 expression in the VNO. A strong expression in immature neurons was found as well as in the microvilli of mature neurons (putative site of chemodetection). Interestingly and confirming its dual localisation, the genetic invalidation of the CNGA4 channel has, as consequences, a strong impairment in vomeronasal maturation as well as deficit in pheromone sensing. Thus the CNGA4 channel appears to be a multifunctional protein in the mouse VNO playing essential role(s) in this organ. During the second part of the work, the morphology of the most recently described olfactory subsystem, the Grueneberg ganglion, was investigated in detail. Interestingly we found that glial cells and ciliated neurons compose this olfactory ganglion. This particular morphological aspect was similar to the olfactory AWC neurons from C. elegans which was used for further comparisons. Thus as for AWC neurons, we found that GG neurons are sensitive to temperature changes and are able to detect highly volatile molecules. Indeed, the presence of alarm pheromones (APs) secreted by stressed mice, elicit strong cellular responses, as well as a GG dependent behavioural changes. Investigations on the signaling elements present in GG neurons revealed that, as for AWC neurons, or pGC-D expressing neurons from the MOE, proteins participating in a cGMP pathway were found in GG neurons such as pGC-G and CNGA3 channels. These two proteins might be implicated in chemosensing as well as in thermosensing, two apparent properties of this organ. In this thesis, the multisensory modalities of two mouse olfactory subsystems were described and are related to a high degree of complexity required for the animal to sense its environment

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: A homozygous mutation in the H6 family homeobox 1 (HMX1) gene is responsible for a new oculoauricular defect leading to eye and auricular developmental abnormalities as well as early retinal degeneration (MIM 612109). However, the HMX1 pathway remains poorly understood, and in the first approach to better understand the pathway's function, we sought to identify the target genes. METHODS: We developed a predictive promoter model (PPM) approach using a comparative transcriptomic analysis in the retina at P15 of a mouse model lacking functional Hmx1 (dmbo mouse) and its respective wild-type. This PPM was based on the hypothesis that HMX1 binding site (HMX1-BS) clusters should be more represented in promoters of HMX1 target genes. The most differentially expressed genes in the microarray experiment that contained HMX1-BS clusters were used to generate the PPM, which was then statistically validated. Finally, we developed two genome-wide target prediction methods: one that focused on conserving PPM features in human and mouse and one that was based on the co-occurrence of HMX1-BS pairs fitting the PPM, in human or in mouse, independently. RESULTS: The PPM construction revealed that sarcoglycan, gamma (35kDa dystrophin-associated glycoprotein) (Sgcg), teashirt zinc finger homeobox 2 (Tshz2), and solute carrier family 6 (neurotransmitter transporter, glycine) (Slc6a9) genes represented Hmx1 targets in the mouse retina at P15. Moreover, the genome-wide target prediction revealed that mouse genes belonging to the retinal axon guidance pathway were targeted by Hmx1. Expression of these three genes was experimentally validated using a quantitative reverse transcription PCR approach. The inhibitory activity of Hmx1 on Sgcg, as well as protein tyrosine phosphatase, receptor type, O (Ptpro) and Sema3f, two targets identified by the PPM, were validated with luciferase assay. CONCLUSIONS: Gene expression analysis between wild-type and dmbo mice allowed us to develop a PPM that identified the first target genes of Hmx1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endocrine disruption is defined as the perturbation of the endocrine system, which includes disruption of nuclear hormone receptor signalling. Peroxisome proliferator-activated receptors (PPARs) represent a family of nuclear receptors that has not yet been carefully studied with regards to endocrine disruption, despite the fact that PPARs are known to be important targets for xenobiotics. Here we report a first comprehensive approach aimed at defining the mechanistic basis of PPAR disruption focusing on one chemical, the plasticizer monethylhexyl phthalate (MEHP), but using a variety of methodologies and models. We used mammalian cells and a combination of biochemical and live cell imaging techniques to show that MEHP binds to PPAR gamma and selectively regulates interactions with coregulators. Micro-array experiments further showed that this selectivity is translated at the physiological level during adipocyte differentiation. In that context, MEHP functions as a selective PPAR modulator regulating only a subset of PPAR gamma target genes compared to the action of a full agonist. We also explored the action of MEHP on PPARs in an aquatic species, Xenopus laevis, as many xenobiotics are found in aquatic ecosystems. In adult males, micro-array data indicated that MEHP influences liver physiology, possibly through a cross-talk between PPARs and estrogen receptors (ER). In early Xenopus laevis embryos, we showed that PPAR beta/delta exogenous activation by an agonist or by MEHP affects development. Taken together our results widen the concept of endocrine disruption by pinpointing PPARs as key factors in that process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insect attack triggers changes in transcript level in plants that are mediated predominantly by jasmonic acid (JA). The implication of ethylene (ET), salicylic acid (SA), and other signals in this response is less understood and was monitored with a microarray containing insect- and defense-regulated genes. Arabidopsis thaliana mutants coi1-1, ein2-1, and sid2-1 impaired in JA, ET, and SA signaling pathways were challenged with the specialist small cabbage white (Pieris rapae) and the generalist Egyptian cotton worm (Spodoptera littoralis). JA was shown to be a major signal controlling the upregulation of defense genes in response to either insect but was found to suppress changes in transcript level only in response to P. rapae. Larval growth was affected by the JA-dependent defenses, but S. littoralis gained much more weight on coi1-1 than P. rapae. ET and SA mutants had an altered transcript profile after S. littoralis herbivory but not after P. rapae herbivory. In contrast, both insects yielded similar transcript signatures in the abscisic acid (ABA)-biosynthetic mutants aba2-1 and aba3-1, and ABA controlled transcript levels both negatively and positively in insect-attacked plants. In accordance with the transcript signature, S. littoralis larvae performed better on aba2-1 mutants. This study reveals a new role for ABA in defense against insects in Arabidopsis and identifies some components important for plant resistance to herbivory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyphosphate (iPOP) is a linear polymer of orthophosphate units linked together by high energy phosphoanhydride bonds. It is found in all organisms, localized in organelles called acidocalcisomes and ranges from a few to few hundred monomers in length. iPOP has been found to play a vast array of roles in all organisms, including phosphate and energy metabolism, regulation of enzymes, virulence, pathogenicity, bone remodelling and blood clotting, among many others. Recently it was found that iPOP levels were increased in myeloma cells. The growing interest in iPOP in human cell lines makes it an interesting molecule to study. However, not much is known about its metabolism in eukaryotes. Acidocalcisomes are electron dense, acidic organelles that belong to the group of Lysosome Related Organelles (LROs). The conservation of acidocalcisomes among all kingdoms of life is suggestive of their important roles for the organisms. However, they are difficult to analyse because of limited biochemical tools for investigation. Yeast vacuoles present remarkable similarities to acidocalcisomes in terms of their physiological and structural features, including synthesis and storage of iPOP, which make them an ideal candidate to study biological processes which are shared between vacuoles and acidocalcisomes. The availability of tools for genetic manipulation and isolation of vacuoles makes yeast a candidate of choice for the characterization of iPOP synthesis in eukaryotes. Our group has identified the Vacuolar Transporter Chaperone (VTC) complex as iPOP polymerase and identified the catalytic subunit (Vtc4). The goal of my study was to characterize the process of iPOP synthesis by isolated vacuoles and to reconstitute iPOP synthesis in liposomes. The first step was to develop a method for monitoring iPOP by isolated vacuoles over time and comparing it with previously known methods. Next, a detailed characterization was performed to determine the modulators of the process, both for intact as well as solubilized vacuoles. Finally, attempts were made to purify the VTC complex and reconstitute it in liposomes. A parallel line of study was the translocation and storage of synthesized iPOP in the lumen of the vacuoles. As a result of this study, it is possible to determine distinct pools of iPOP- inside and outside the vacuolar lumen. Additionally, I establish that the vacuolar lysate withstands harsh steps during reconstitution on liposomes and retains iPOP synthesizing activity. The next steps will be purification of the intact VTC complex and its structure determination by cryo-electron microscopy. - Les organismes vivants sont composés d'une ou plusieurs cellules responsables des processus biologiques élémentaires tels que la digestion, la respiration, la synthèse et la reproduction. Leur environnement interne est en équilibre et ils réalisent un très grand nombre de réactions chimiques et biochimiques pour maintenir cet équilibre. A différents compartiments cellulaires, ou organelles, sont attribuées des tâches spécifiques pour maintenir les cellules en vie. L'étude de ces fonctions permet une meilleure compréhension de la vie et des organismes vivants. De nombreux processus sont bien connus et caractérisés mais d'autres nécessitent encore des investigations détaillées. L'un de ces processus est le métabolisme des polyphosphates. Ces molécules sont des polymères linéaires de phosphate inorganique dont la taille peut varier de quelques dizaines à quelques centaines d'unités élémentaires. Ils sont présents dans tous les organismes, des bactéries à l'homme. Ils sont localisés principalement dans des compartiments cellulaires appelés acidocalcisomes, des organelles acides observés en microscopie électronique comme des structures denses aux électrons. Les polyphosphates jouent un rôle important dans le stockage et le métabolisme de l'énergie, la réponse au stress, la virulence, la pathogénicité et la résistance aux drogues. Chez l'homme, ils sont impliqués dans la coagulation du sang et le remodelage osseux. De nouvelles fonctions biologiques des polyphosphates sont encore découvertes, ce qui accroît l'intérêt des chercheurs pour ces molécules. Bien que des progrès considérables ont été réalisés afin de comprendre la fonction des polyphosphates chez les bactéries, ce qui concerne la synthèse, le stockage et la dégradation des polyphosphates chez les eucaryotes est mal connu. Les vacuoles de la levure Saccharomyces cerevisiae sont similaires aux acidocalcisomes des organismes supérieurs en termes de structure et de fonction. Les acidocalcisomes sont difficiles à étudier car il n'existe que peu d'outils génétiques et biochimiques qui permettent leur caractérisation. En revanche, les vacuoles peuvent être aisément isolées des cellules vivantes et manipulées génétiquement. Les vacuoles comme les acidocalcisomes synthétisent et stockent les polyphosphates. Ainsi, les découvertes faites grâce aux vacuoles de levures peuvent être extrapolées aux acidocalcisomes des organismes supérieurs. Le but de mon projet était de caractériser la synthèse des polyphosphates par des vacuoles isolées. Au cours de mon travail de thèse, j'ai mis au point une méthode de mesure de la synthèse des polyphosphates par des organelles purifés. Ensuite, j'ai identifié des composés qui modulent la réaction enzymatique lorsque celle-ci a lieu dans la vacuole ou après solubilisation de l'organelle. J'ai ainsi pu mettre en évidence deux groupes distincts de polyphosphates dans le système : ceux au-dehors de la vacuole et ceux en-dedans de l'organelle. Cette observation suggère donc très fortement que les vacuoles non seulement synthétisent les polyphosphates mais aussi transfère les molécules synthétisées de l'extérieur vers l'intérieur de l'organelle. Il est très vraisemblable que les vacuoles régulent le renouvellement des polyphosphates qu'elles conservent, en réponse à des signaux cellulaires. Des essais de purification de l'enzyme synthétisant les polyphosphates ainsi que sa reconstitution dans des liposomes ont également été entrepris. Ainsi, mon travail présente de nouveaux aspects de la synthèse des polyphosphates chez les eucaryotes et les résultats devraient encourager l'élucidation de mécanismes similaires chez les organismes supérieurs. - Les polyphosphates (iPOP) sont des polymères linéaires de phosphates inorganiques liés par des liaisons phosphoanhydres de haute énergie. Ces molécules sont présentes dans tous les organismes et localisées dans des compartiments cellulaires appelés acidocalcisomes. Elles varient en taille de quelques dizaines à quelques centaines d'unités phosphate. Des fonctions nombreuses et variées ont été attribuées aux iPOP dont un rôle dans les métabolismes de l'énergie et du phosphate, dans la régulation d'activités enzymatiques, la virulence, la pathogénicité, le remodelage osseux et la coagulation sanguine. Il a récemment été montré que les cellules de myélome contiennent une grande quantité de iPOP. Il y donc un intérêt croissant pour les iPOP dans les lignées cellulaires humaines. Cependant, très peu d'informations sur le métabolisme des iPOP chez les eucaryotes sont disponibles. Les acidocalcisomes sont des compartiments acides et denses aux électrons. Ils font partie du groupe des organelles similaires aux lysosomes (LROs pour Lysosome Related Organelles). Le fait que les acidocalcisomes soient conservés dans tous les règnes du vivant montrent l'importance de ces compartiments pour les organismes. Cependant, l'analyse de ces organelles est rendue difficile par l'existence d'un nombre limité d'outils biochimiques permettant leur caractérisation. Les vacuoles de levures possèdent des aspects structuraux et physiologiques très similaires à ceux des acidocalcisomes. Par exemple, ils synthétisent et gardent en réserve les iPOP. Ceci fait des vacuoles de levure un modèle idéal pour l'étude de processus biologiques conservés chez les vacuoles et les acidocalcisomes. De plus, la levure est un organisme de choix pour l'étude de la synthèse des iPOP compte-tenu de l'existence de nombreux outils génétiques et la possibilité d'isoler des vacuoles fonctionnelles. Notre groupe a identifié le complexe VTC (Vacuole transporter Chaperone) comme étant responsable de la synthèse des iPOP et la sous-unité Vtc4p comme celle possédant l'activité catalytique. L'objectif de cette étude était de caractériser le processus de synthèse des iPOP en utilisant des vacuoles isolées et de reconstituer la synthèse des iPOP dans des liposomes. La première étape a consisté en la mise au point d'un dosage permettant la mesure de la quantité de iPOP synthétisés par les organelles isolés en fonction du temps. Cette nouvelle méthode a été comparée aux méthodes décrites précédemment dans la littérature. Ensuite, la caractérisation détaillée du processus a permis d'identifier des composés modulateurs de la réaction à la fois pour des vacuoles intactes et des vacuoles solubilisées. Enfin, des essais de purification du complexe VTC et sa reconstitution dans des liposomes ont été entrepris. De façon parallèle, une étude sur la translocation et le stockage des iPOP dans le lumen des vacuoles a été menée. Il a ainsi été possible de mettre en évidence différents groupes de iPOP : les iPOP localisés à l'intérieur et ceux localisés à l'extérieur des vacuoles isolées. De plus, nous avons observé que le lysat vacuolaire n'est pas détérioré par les étapes de reconstitution dans les liposomes et conserve l'activité de synthèse des iPOP. Les prochaines étapes consisteront en la purification du complexe intact et de la détermination de sa structure par cryo-microscopie électronique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We sought to assess the feasibility and reproducibility of performing tissue-based immune characterization of the tumor microenvironment using CT-compatible needle biopsy material. Three independent biopsies were obtained intraoperatively from one metastatic epithelial ovarian cancer lesion of 7 consecutive patients undergoing surgical cytoreduction using a 16-gauge core biopsy needle. Core specimens were snap-frozen and subjected to immunohistochemistry (IHC) against human CD3, CD4, CD8, and FoxP3. A portion of the cores was used to isolate RNA for 1) real-time quantitative (q)PCR for CD3, CD4, CD8, FoxP3, IL-10 and TGF-beta, 2) multiplexed PCR-based T cell receptor (TCR) CDR3 Vβ region spectratyping, and 3) gene expression profiling. Pearson's correlations were examined for immunohistochemistry and PCR gene expression, as well as for gene expression array data obtained from different tumor biopsies. Needle biopsy yielded sufficient tissue for all assays in all patients. IHC was highly reproducible and informative. Significant correlations were seen between the frequency of CD3+, CD8+ and FoxP3+ T cells by IHC with CD3ε, CD8A, and FoxP3 gene expression, respectively, by qPCR (r=0.61, 0.86, and 0.89; all p< 0.05). CDR3 spectratyping was feasible and highly reproducible in each tumor, and indicated a restricted repertoire for specific TCR Vβ chains in tumor-infiltrating T cells. Microarray gene expression revealed strong correlation between different biopsies collected from the same tumor. Our results demonstrate a feasible and reproducible method of immune monitoring using CT-compatible needle biopsies from tumor tissue, thereby paving the way for sophisticated translational studies during tumor biological therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Faced with an increasing number of data and rankings, the author questions the roles of the different groups of actors who were originally involved in questioning the use of statistical indicators as a means of addressing issues of access to higher education. The comparison and nature of these international (UNESCO, OECD, EUROSTAT) and national (Germany, England, France, Switzerland) indicators in matters of inequalities of access to higher education question the tension between the discourses and the indicators they generate, and their recording at the national level. Who says what and with what consequences? What range of actors are involved in this process? What kind of power relations forms them? The author discusses how the issue of inequalities of access to higher education got on to the agendas of European organisations, identifies the policies that were defined, and sets them against an array of indicators, showing the discrepancy between the discourses and what the indicators reveal, the gap between the recommendations and the available tools. Why is there such a contrast? What are the mechanisms at work? Is it a technical or a political problem? What does this discrepancy reveal as far as national specificities within the construction of social inequalities are concerned?

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pathogenesis of hepatosplenic T-cell lymphoma (HSTL), a rare entity mostly derived from γδ T cells and usually with a fatal outcome, remains largely unknown. In this study, HSTL samples (7γδ and 2αβ) and the DERL2 HSTL cell line were subjected to combined gene-expression profiling and array-based comparative genomic hybridization. Compared with other T-cell lymphomas, HSTL had a distinct molecular signature irrespective of TCR cell lineage. Compared with peripheral T-cell lymphoma, not otherwise specified and normal γδ T cells, HSTL overexpressed genes encoding NK-cell-associated molecules, oncogenes (FOS and VAV3), the sphingosine-1-phosphatase receptor 5 involved in cell trafficking, and the tyrosine kinase SYK, whereas the tumor-suppressor gene AIM1 (absent in melanoma 1) was among the most down-expressed. We found highly methylated CpG islands of AIM1 in DERL2 cells, and decitabine treatment induced a significant increase in AIM1 transcripts. Syk was present in HSTL cells and DERL2 cells contained phosphorylated Syk and were sensitive to a Syk inhibitor in vitro. Genomic profiles confirmed recurrent isochromosome 7q (n = 6/9) without alterations at the SYK and AIM1 loci. Our results identify a distinct molecular signature for HSTL and highlight oncogenic pathways that offer rationale for exploring new therapeutic options such as Syk inhibitors and demethylating agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Medulloblastoma is the most frequent malignant paediatric brain tumour. The activation of the Wnt/beta-catenin pathway occurs in 10-15% of medulloblastomas and has been recently described as a marker for favourable patient outcome. We report a series of 72 paediatric medulloblastomas evaluated for beta-catenin protein expression, CTNNB1 mutations, and comparative genomic hybridization. Gene expression profiles were also available in a subset of 40 cases. Immunostaining of beta-catenin showed extensive nuclear staining (>50% of the tumour cells) in six cases and focal nuclear staining (<10% of cells) in three cases. The other cases either exhibited a signal strictly limited to the cytoplasm (58 cases) or were negative (five cases). CTNNB1 mutations were detected in all beta-catenin extensively nucleopositive cases. The expression profiles of these cases documented strong activation of the Wnt/beta-catenin pathway. Remarkably, five out of these six tumours showed a complete loss of chromosome 6. In contrast, cases with focal nuclear beta-catenin staining, as well as tumours with negative or cytoplasmic staining, never demonstrated CTNNB1 mutation, Wnt/beta-catenin pathway activation or chromosome 6 loss. Patients with extensive nuclear staining were significantly older at diagnosis and were in continuous complete remission after a mean follow-up of 75.7 months (range 27.5-121.2 months) from diagnosis. All three patients with focal nuclear staining of beta-catenin died within 36 months from diagnosis. Altogether, these data confirm and extend previous observations that CTNNB1-mutated tumours represent a distinct molecular subgroup of medulloblastomas with favourable outcome, indicating that therapy de-escalation should be considered. International consensus on the definition criteria of this distinct medulloblastoma subgroup should be achieved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a continuation of "Postmortem Chemistry Update Part I," Part II deals with molecules linked to liver and cardiac functions, alcohol intake and alcohol misuse, myocardial ischemia, inflammation, sepsis, anaphylaxis, and hormonal disturbances. A very important array of new material concerning these situations had appeared in the forensic literature over the last two decades. Some molecules, such as procalcitonin and C-reactive protein, are currently researched in cases of suspected sepsis and inflammation, whereas many other analytes are not integrated into routine casework. As in part I, a literature review concerning a large panel of molecules of forensic interest is presented, as well as the results of our own observations, where possible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Synthesis of the Staphylococcus aureus peptidoglycan pentaglycine interpeptide bridge is catalyzed by the nonribosomal peptidyl transferases FemX, FemA and FemB. Inactivation of the femAB operon reduces the interpeptide to a monoglycine, leading to a poorly crosslinked peptidoglycan. femAB mutants show a reduced growth rate and are hypersusceptible to virtually all antibiotics, including methicillin, making FemAB a potential target to restore beta-lactam susceptibility in methicillin-resistant S. aureus (MRSA). Cis-complementation with wild type femAB only restores synthesis of the pentaglycine interpeptide and methicillin resistance, but the growth rate remains low. This study characterizes the adaptations that ensured survival of the cells after femAB inactivation. RESULTS: In addition to slow growth, the cis-complemented femAB mutant showed temperature sensitivity and a higher methicillin resistance than the wild type. Transcriptional profiling paired with reporter metabolite analysis revealed multiple changes in the global transcriptome. A number of transporters for sugars, glycerol, and glycine betaine, some of which could serve as osmoprotectants, were upregulated. Striking differences were found in the transcription of several genes involved in nitrogen metabolism and the arginine-deiminase pathway, an alternative for ATP production. In addition, microarray data indicated enhanced expression of virulence factors that correlated with premature expression of the global regulators sae, sarA, and agr. CONCLUSION: Survival under conditions preventing normal cell wall formation triggered complex adaptations that incurred a fitness cost, showing the remarkable flexibility of S. aureus to circumvent cell wall damage. Potential FemAB inhibitors would have to be used in combination with other antibiotics to prevent selection of resistant survivors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genotypic frequencies at codominant marker loci in population samples convey information on mating systems. A classical way to extract this information is to measure heterozygote deficiencies (FIS) and obtain the selfing rate s from FIS = s/(2 - s), assuming inbreeding equilibrium. A major drawback is that heterozygote deficiencies are often present without selfing, owing largely to technical artefacts such as null alleles or partial dominance. We show here that, in the absence of gametic disequilibrium, the multilocus structure can be used to derive estimates of s independent of FIS and free of technical biases. Their statistical power and precision are comparable to those of FIS, although they are sensitive to certain types of gametic disequilibria, a bias shared with progeny-array methods but not FIS. We analyse four real data sets spanning a range of mating systems. In two examples, we obtain s = 0 despite positive FIS, strongly suggesting that the latter are artefactual. In the remaining examples, all estimates are consistent. All the computations have been implemented in a open-access and user-friendly software called rmes (robust multilocus estimate of selfing) available at http://ftp.cefe.cnrs.fr, and can be used on any multilocus data. Being able to extract the reliable information from imperfect data, our method opens the way to make use of the ever-growing number of published population genetic studies, in addition to the more demanding progeny-array approaches, to investigate selfing rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estradiol and progesterone are crucial for the acquisition of receptivity and the change in transcriptional activity of target genes in the implantation window. The aim of this study was to differentiate the regulation of genes in the endometrium of patients with recurrent implantation failure (IF) versus those who became pregnant after in vitro fertilization (IVF) treatment. Moreover, the effect of embryo-derived factors on endometrial transcriptional activity was studied. Nine women with known IVF outcome (IF, M, miscarriage, OP, ongoing pregnancy) and undergoing hysteroscopy with endometrial biopsy were enrolled. Biopsies were taken during the midluteal phase. After culture in the presence of embryo-conditioned IVF media, total RNA was extracted and submitted to reverse transcription, target cDNA synthesis, biotin labelling, fragmentation and hybridization using the Affymetrix Human Genome U133A 2.0 Chip. Differential expression of selected genes was re-analysed by quantitative PCR, in which the results were calculated as threshold cycle differences between the groups and normalized to Glyceraldehyde phosphate dehydrogenase and beta-actin. Differences were seen for several genes from endometrial tissue between the IF and the pregnancy groups, and when comparing OP with M, 1875 up- and 1807 down-regulated genes were returned. Real-time PCR analysis confirmed up-regulation for somatostatin, PLAP-2, mucin 4 and CD163, and down-regulation of glycodelin, IL-24, CD69, leukaemia inhibitory factor and prolactin receptor between Op and M. When the different embryo-conditioned media were compared, no significant differential regulation could be demonstrated. Although microarray profiling may currently not be sensitive enough for studying the effects of embryo-derived factors on the endometrium, the observed differences in gene expression between M and OP suggest that it will become an interesting tool for the identification of fertility-relevant markers produced by the endometrium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: The kidney plays an essential role in maintaining sodium and water balance, thereby controlling the volume and osmolarity of the extracellular body fluids, the blood volume and the blood pressure. The final adjustment of sodium and water reabsorption in the kidney takes place in cells of the distal part of the nephron in which a set of apical and basolateral transporters participate in vectorial sodium and water transport from the tubular lumen to the interstitium and, finally, to the general circulation. According to a current model, the activity and/or cell-surface expression of these transporters is/are under the control of a gene network composed of the hormonally regulated, as well as constitutively expressed, genes. It is proposed that this gene network may include new candidate genes for salt- and water-losing syndromes and for salt-sensitive hypertension. A new generation of functional genomics techniques have recently been applied to the characterization of this gene network. The purpose of this review is to summarize these studies and to discuss the potential of the different techniques for characterization of the renal transcriptome. RECENT FINDINGS: Recently, DNA microarrays and serial analysis of gene expression have been applied to characterize the kidney transcriptome in different in-vivo and in-vitro models. In these studies, a set of new interesting genes potentially involved in the regulation of sodium and water reabsorption by the kidney have been identified and are currently under detailed investigation. SUMMARY: Characterization of the kidney transcriptome is greatly expanding our knowledge of the gene networks involved in multiple kidney functions, including the maintenance of sodium and water homeostasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of chemoresistance represents a major obstacle in the successful treatment of cancers such as neuroblastoma (NB), a particularly aggressive childhood solid tumour. The mechanisms underlying the chemoresistant phenotype in NB were addressed by gene expression profiling of two doxorubicin (DoxR)-resistant vs sensitive parental cell lines. Not surprisingly, the MDR1 gene was included in the identified upregulated genes, although the highest overexpressed transcript in both cell lines was the frizzled-1 Wnt receptor (FZD1) gene, an essential component of the Wnt/beta-catenin pathway. FZD1 upregulation in resistant variants was shown to mediate sustained activation of the Wnt/beta-catenin pathway as revealed by nuclear beta-catenin translocation and target genes transactivation. Interestingly, specific micro-adapted short hairpin RNA (shRNAmir)-mediated FZD1 silencing induced parallel strong decrease in the expression of MDR1, another beta-catenin target gene, revealing a complex, Wnt/beta-catenin-mediated implication of FZD1 in chemoresistance. The significant restoration of drug sensitivity in FZD1-silenced cells confirmed the FZD1-associated chemoresistance. RNA samples from 21 patient tumours (diagnosis and postchemotherapy), showed a highly significant FZD1 and/or MDR1 overexpression after treatment, underlining a role for FZD1-mediated Wnt/beta-catenin pathway in clinical chemoresistance. Our data represent the first implication of the Wnt/beta-catenin pathway in NB chemoresistance and identify potential new targets to treat aggressive and resistant NB.