245 resultados para potential for ammonia volatilization
Resumo:
Progress in the understanding of the hepatitis C virus life cycle allowed the development of new, very promising antiviral therapies. Although these new drugs have a favourable profile in terms of efficacy, tolerance and interaction potential, their prescription in the setting of comedication and impaired renal or hepatic function remains a challenge. Here, we provide a summary of pharmacological considerations, focusing on sofosbuvir, simeprevir and daclatasvir. A better understanding of their metabolic pathways and transporters may help the prescriber to identify and manage drug interactions especially in patients under immunosuppressive or anti-HIV therapy. Recommendations for the prescription of these drugs in specific situations are also discussed.
Resumo:
Mast cells are important in the initiation of ocular inflammation, but the consequences of mast cell degranulation on ocular pathology remain uncharacterized. We induced mast cell degranulation by local subconjunctival injection of compound 48/80. Initial degranulation of mast cells was observed in the choroid 15 minutes after the injection and increased up to 3 hours after injection. Clinical signs of anterior segment inflammation paralleled mast cell degranulation. With the use of optical coherence tomography, dilation of choroidal vessels and serous retinal detachments (SRDs) were observed and confirmed by histology. Subconjunctival injection of disodium cromoglycate significantly reduced the rate of SRDs, demonstrating the involvement of mast cell degranulation in posterior segment disorders. The infiltration of polymorphonuclear and macrophage cells was associated with increased ocular media concentrations of tumor necrosis factor-α, CXCL1, IL-6, IL-5, chemokine ligand 2, and IL-1β. Analysis of the amounts of vascular endothelial growth factor and IL-18 showed an opposite evolution of vascular endothelial growth factor compared with IL-18 concentrations, suggesting that they regulate each other's production. These findings suggest that the local degranulation of ocular mast cells provoked acute ocular inflammation, dilation, increased vascular permeability of choroidal vessels, and SRDs. The involvement of mast cells in retinal diseases should be further investigated. The pharmacologic inhibition of mast cell degranulation may be a potential target for intervention.
Resumo:
Les lymphocytes T CD4+ sont connus pour leur potentiel d'acquisition de fragments membraneux de cellules présentatrices d'antigène (CPA) dans un processus nommé trogocytose. Ce phénomène est observé lors de l'interaction entre le lymphocyte T CD4+ antigène-spécifique et la CPA lors de la présentation de l'antigène en question, et dépend donc de la spécificité du lymphocyte T CD4+. L'identification des lymphocytes T CD4+ sujets à la trogocytose en co-culture avec des CPA chargées d'un antigène connu permet d'enrichir des lymphocytes T antigène-spécifiques sans connaître leur spécificité exacte ou leur profil de production de cytokines. Dans cette étude, nous avons donc cherché à évaluer l'utilité de cette méthode dans l'identification de la spécificité des lymphocytes T effecteurs et régulateurs lors de l'inflammation auto-immune avec des spécificités souvent inconnues. La trogocytose a démontré son efficacité dans la détection de lymphocytes T réactifs à la protéine basique de myéline in vitro ainsi qu'ex vivo après immunisation. Cependant, le potentiel de la trogocytose à identifier des lymphocytes T régulateurs antigène-spécifiques est limité par le fait que les lymphocytes T régulateurs Foxp3+ montrent un taux élevé de manière constitutive de trogocytose comparé aux lymphocytes T Foxp3-, Un taux localement élevé de trogocytose lors d'un état inflammatoire (observé au niveau des lymphocytes T effecteurs et régulateurs isolés du système nerveux central enflammé) empêche l'utilisation de la trogocytose dans l'évaluation de la réactivité antigénique de cellules extraites d'un site inflammatoire. Nos résultats montrent la possibilité d'enrichir des lymphocytes T conventionnels antigène- réactifs en périphérie par détection au moyen de la trogocytose. Nous avons aussi montré les limitations de cette méthode dans sa capacité d'identifier des lymphocytes T effecteurs et régulateurs antigène- réactifs extraits de sites inflammatoires. Le potentiel de trogocytose élevé dans les sites d'inflammation soulève la question de la signification biologique de ce phénomène dans l'inflammation, dans la suppression médiée par les lymphocytes T régulateurs et dans le maintien de la tolérance immunologique dans des états de santé variables.
Resumo:
Tissue engineering is a popular topic in peripheral nerve repair. Combining a nerve conduit with supporting adipose-derived cells could offer an opportunity to prevent time-consuming Schwann cell culture or the use of an autograft with its donor site morbidity and eventually improve clinical outcome. The aim of this study was to provide a broad overview over promising transplantable cells under equal experimental conditions over a long-term period. A 10-mm gap in the sciatic nerve of female Sprague-Dawley rats (7 groups of 7 animals, 8 weeks old) was bridged through a biodegradable fibrin conduit filled with rat adipose-derived stem cells (rASCs), differentiated rASCs (drASCs), human (h)ASCs from the superficial and deep abdominal layer, human stromal vascular fraction (SVF), or rat Schwann cells, respectively. As a control, we resutured a nerve segment as an autograft. Long-term evaluation was carried out after 12 weeks comprising walking track, morphometric, and MRI analyses. The sciatic functional index was calculated. Cross sections of the nerve, proximal, distal, and in between the two sutures, were analyzed for re-/myelination and axon count. Gastrocnemius muscle weights were compared. MRI proved biodegradation of the conduit. Differentiated rat ASCs performed significantly better than undifferentiated rASCs with less muscle atrophy and superior functional results. Superficial hASCs supported regeneration better than deep hASCs, in line with published in vitro data. The best regeneration potential was achieved by the drASC group when compared with other adipose tissue-derived cells. Considering the ease of procedure from harvesting to transplanting, we conclude that comparison of promising cells for nerve regeneration revealed that particularly differentiated ASCs could be a clinically translatable route toward new methods to enhance peripheral nerve repair.
Resumo:
During different forms of neurodegenerative diseases, including the retinal degeneration, several cell cycle proteins are expressed in the dying neurons from Drosophila to human revealing that these proteins are a hallmark of neuronal degeneration. This is true for animal models of Alzheimer's, and Parkinson's diseases, Amyotrophic Lateral Sclerosis and for Retinitis Pigmentosa as well as for acute injuries such as stroke and light damage. Longitudinal investigation and loss-of-function studies attest that cell cycle proteins participate to the process of cell death although with different impacts, depending on the disease. In the retina, inhibition of cell cycle protein action can result to massive protection. Nonetheless, the dissection of the molecular mechanisms of neuronal cell death is necessary to develop adapted therapeutic tools to efficiently protect photoreceptors as well as other neuron types.
Resumo:
BACKGROUND: Dysferlin is reduced in patients with limb girdle muscular dystrophy type 2B, Miyoshi myopathy, distal anterior compartment myopathy, and in certain Ethnic clusters. METHODS: We evaluated clinical and genetic patient data from three different Swiss Neuromuscular Centers. RESULTS: Thirteen patients from 6 non-related families were included. Age of onset was 18.8 ± 4.3 years. In all patients, diallelic disease-causing mutations were identified in the DYSF gene. Nine patients from 3 non-related families from Central Switzerland carried the identical homozygous mutation, c.3031 + 2T>C. A possible founder effect was confirmed by haplotype analysis. Three patients from two different families carried the heterozygous mutation, c.1064_1065delAA. Two novel mutations were identified (c.2869C>T (p.Gln957Stop), c.5928G>A (p.Trp1976Stop)). CONCLUSIONS: Our study confirms the phenotypic heterogeneity associated with DYSF mutations. Two mutations (c.3031 + 2T>C, c.1064_1065delAA) appear common in Switzerland. Haplotype analysis performed on one case (c. 3031 + 2T>C) suggested a possible founder effect.
Resumo:
The oxidative potential (OP) of particulate matter has been proposed as a toxicologically relevant metric. This concept is already frequently used for hazard characterization of ambient particles but it is still seldom applied in the occupational field. The objective of this study was to assess the OP in two different types of workplaces and to investigate the relationship between the OP and the physicochemical characteristics of the collected particles. At a toll station, at the entrance of a tunnel ('Tunnel' site), and at three different mechanical yards ('Depot' sites), we assessed particle mass (PM4 and PM2.5 and size distribution), number and surface area, organic and elemental carbon, polycyclic aromatic hydrocarbon (PAH), and four quinones as well as iron and copper concentration. The OP was determined directly on filters without extraction by using the dithiothreitol assay (DTT assay-OP(DTT)). The averaged mass concentration of respirable particles (PM4) at the Tunnel site was about twice the one at the Depot sites (173±103 and 90±36 µg m(-3), respectively), whereas the OP(DTT) was practically identical for all the sites (10.6±7.2 pmol DTT min(-1) μg(-1) at the Tunnel site; 10.4±4.6 pmol DTT min(-1) μg(-1) at the Depot sites). The OP(DTT) of PM4 was mostly present on the smallest PM2.5 fraction (OP(DTT) PM2.5: 10.2±8.1 pmol DTT min(-1) μg(-1); OP(DTT) PM4: 10.5±5.8 pmol DTT min(-1) μg(-1) for all sites), suggesting the presence of redox inactive components in the PM2.5-4 fraction. Although the reactivity was similar at the Tunnel and Depot sites irrespective of the metric chosen (OP(DTT) µg(-1) or OP(DTT) m(-3)), the chemicals associated with OP(DTT) were different between the two types of workplaces. The organic carbon, quinones, and/or metal content (Fe, Cu) were strongly associated with the DTT reactivity at the Tunnel site whereas only Fe and PAH were associated (positively and negatively, respectively) with this reactivity at the Depot sites. These results demonstrate the feasibility of measuring of the OP(DTT) in occupational environments and suggest that the particulate OP(DTT) is integrative of different physicochemical properties. This parameter could be a potentially useful exposure proxy for investigating particle exposure-related oxidative stress and its consequences. Further research is needed mostly to demonstrate the association of OP(DTT) with relevant oxidative endpoints in humans exposed to particles.
Resumo:
The antifungal "paradoxical effect" has been described as the reversal of growth inhibition at high doses of echinocandins, most usually caspofungin. This microbiological effect appears to be a cellular compensatory response to cell wall damage, resulting in alteration of cell wall content and structure as well as fungal morphology and growth. In vitro studies demonstrate this reproducible effect in a certain percentage of fungal isolates, but animal model and clinical studies are less consistent. The calcineurin and Hsp90 cell signaling pathways appear to play a major role in regulating these cellular and structural changes. Regardless of the clinical relevance of this paradoxical growth effect, understanding the specific actions of echinocandins is paramount to optimizing their use at either standard or higher dosing schemes, as well as developing future improvements in our antifungal arsenal.
Resumo:
A photonic system has been developed that enables sensitive quantitative determination of reactive oxygen species (ROS) - mainly hydrogen peroxide (H2O2) - in aerosol samples such as airborne nanoparticles and exhaled air from patients. The detection principle relies on the amplification of the absorbance under multiple scattering conditions due to optical path lengthening [1] and [2]. In this study, the presence of cellulose membrane that acts as random medium into the glass optical cell considerably improved the sensitivity of the detection based on colorimetric FOX assay (FeII/orange xylenol). Despite the loss of assay volume (cellulose occupies 75% of cell volume) the limit of detection is enhanced by one order of magnitude reaching the value of 9 nM (H2O2 equivalents). Spectral analysis is performed automatically with a periodicity of 5 to 15 s, giving rise to real-time ROS measurements. Moreover, the elution of air sample into the collection chamber via a micro-diffuser (impinger) enables quantitative determination of ROS contained in or generated from airborne samples. As proof-of-concept the photonic ROS detection system was used in the determination of both ROS generated from traffic pollution and ROS contained in the exhaled breath as lung inflammation biomarkers.