422 resultados para antigen presenting cells


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protection from reactivation of persistent herpes virus infection is mediated by Ag-specific CD8 T cell responses, which are highly regulated by still poorly understood mechanisms. In this study, we analyzed differentiation and clonotypic dynamics of EBV- and CMV-specific T cells from healthy adults. Although these T lymphocytes included all subsets, from early-differentiated (EM/CD28(pos)) to late-differentiated (EMRA/CD28(neg)) stages, they varied in the sizes/proportions of these subsets. In-depth clonal composition analyses revealed TCR repertoires, which were highly restricted for CMV- and relatively diverse for EBV-specific cells. Virtually all virus-specific clonotypes identified in the EMRA/CD28(neg) subset were also found within the pool of less differentiated "memory" cells. However, striking differences in the patterns of dominance were observed among these subsets, because some clonotypes were selected with differentiation while others were not. Late-differentiated CMV-specific clonotypes were mostly characterized by TCR with lower dependency on CD8 coreceptor interaction. Yet all clonotypes displayed similar functional avidities, suggesting a compensatory role of CD8 in the clonotypes of lower TCR avidity. Importantly, clonotype selection and composition of each virus-specific subset upon differentiation was highly preserved over time, with the presence of the same dominant clonotypes at specific differentiation stages within a period of 4 years. Remarkably, clonotypic distribution was stable not only in late-differentiated but also in less-differentiated T cell subsets. Thus, T cell clonotypes segregate with differentiation, but the clonal composition once established is kept constant for at least several years. These findings reveal novel features of the highly sophisticated control of steady state protective T cell activity in healthy adults.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resistance and susceptibility to infection with the intracellular parasite, Leishmania major, are mediated by parasite-specific CD4+ Th1 and Th2 cells, respectively. It is well established that the protective effect of parasite-specific CD4+ Th1 cells is largely dependent upon the IFN-gamma produced. However, recent results indicate that the effect of Th1 cells on resolution of lesions induced by L. major in genetically resistant mice also requires a functional Fas-FasL pathway of cytotoxicity. In contrast to resistant mice, susceptible BALB/c mice develop aberrant Th2 responses following infection with L. major and consequently suffer progressive disease. These outcomes clearly depends upon the production of interleukin 4 (IL-4) early after infection. We have shown that a burst of IL-4 mRNA, peaking in draining lymph nodes of BALB/c mice 16 hrs after infection, occurs within CD4+ T cells that express V beta 4-V alpha 8 T cell receptors. In contrast to control and V beta 6-deficient mice, V beta 4-deficient BALB/c mice were resistant to infection, demonstrating the role of these cells in Th2 development. The early IL-4 response was absent in these mice, and Th1 responses occurred following infection. The LACK antigen of L. major induced comparable IL-4 production in V beta 4-V alpha 8 CD4+ T cells. Thus, the IL-4 required for Th2 development and susceptibility to L. major is produced by a restricted population of V beta 4-V alpha 8 CD4+ T cells after cognate interaction with a single antigen from this complex parasite. The IL-4 produced rapidly by these CD4+ T cells induces within 48 hours a state of unresponsiveness to IL-12 among parasite-specific CD4+ T cell precursors by downregulating the IL-12 receptor beta 2 chain expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BALB/c mice develop aberrant T helper 2 (Th2) responses and suffer progressive disease after infection with Leishmania major. These outcomes depend on the production of interleukin-4 (IL-4) early after infection. Here we demonstrate that the burst of IL-4 mRNA, peaking in draining lymph nodes of BALB/c mice 16 hr after infection, occurs within CD4+ T cells that express V beta 4 V alpha 8 T cell receptors. In contrast to control and V beta 6-deficient BALB/c mice, V beta 4-deficient BALB/c mice were resistant to infection, demonstrating the role of these cells in Th2 development. The early IL-4 response was absent in these mice, and T helper 1 responses occurred following infection. Recombinant LACK antigen from L. major induced comparable IL-4 production in V beta 4 V alpha 8 CD4+ cells. Thus, the IL-4 required for Th2 development and susceptibility to L. major is produced by a restricted population of V beta 4 V alpha 8 CD4+ T cells after cognate interaction with a single antigen from this complex organism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability of vaccines to induce memory cytotoxic T-cell responses in the lung is crucial in stemming and treating pulmonary diseases caused by viruses and bacteria. However, most approaches to subunit vaccines produce primarily humoral and only to a lesser extent cellular immune responses. We developed a nanoparticle (NP)-based carrier that, upon delivery to the lung, specifically targets pulmonary dendritic cells, thus enhancing antigen uptake and transport to the draining lymph node; antigen coupling via a disulfide link promotes highly efficient cross-presentation after uptake, inducing potent protective mucosal and systemic CD8(+) T-cell immunity. Pulmonary immunization with NP-conjugated ovalbumin (NP-ova) with CpG induced a threefold enhancement of splenic antigen-specific CD8(+) T cells displaying increased CD107a expression and IFN-γ production compared with immunization with soluble (i.e., unconjugated) ova with CpG. This enhanced response was accompanied by a potent Th17 cytokine profile in CD4(+) T cells. After 50 d, NP-ova and CpG also led to substantial enhancements in memory CD8(+) T-cell effector functions. Importantly, pulmonary vaccination with NP-ova and CpG induced as much as 10-fold increased frequencies of antigen-specific effector CD8(+) T cells to the lung and completely protected mice from morbidity following influenza-ova infection. Here, we highlight recruitment to the lung of a long-lasting pool of protective effector memory cytotoxic T-cells by our disulfide-linked antigen-conjugated NP formulation. These results suggest the reduction-reversible NP system is a highly promising platform for vaccines specifically targeting intracellular pathogens infecting the lung.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Progenitor cells can be obtained by outgrowth from tissue explants during primary ex vivo tissue culture. We have isolated and characterized cells outgrown from neonatal mouse pancreatic explants. A relatively uniform population of cells showing a distinctive morphology emerged over time in culture. This population expressed monocyte/macrophage and hematopoietic markers (CD11b(+) and CD45(+)), and some stromal-related markers (CD44(+) and CD29(+)), but not mesenchymal stem cell (MSC)-defining markers (CD90(-) and CD105(-)) nor endothelial (CD31(-)) or stem cell-associated markers (CD133(-) and stem cell antigen-1; Sca-1(-)). Cells could be maintained in culture as a plastic-adherent monolayer in culture medium (MesenCult MSC) for more than 1 year. Cells spontaneously formed sphere clusters "pancreatospheres" which, however, were nonclonal. When cultured in appropriate media, cells differentiated into multiple mesenchymal lineages (fat, cartilage, and bone). Positive dithizone staining suggested that a subset of cells differentiated into insulin-producing cells. However, further studies are needed to characterize the endocrine potential of these cells. These findings indicate that a myelomonocytoid population from pancreatic explant outgrowths has mesenchymal differentiation potential. These results are in line with recent data onmonocyte-derivedmesenchymal progenitors (MOMPs).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intravenous administration of polyclonal and monoclonal antibodies has proven to be a clinically valid approach in the treatment, or at least relief, of many acute and chronic pathologies, such as infection, immunodeficiency, and a broad range of autoimmune conditions. Plasma-derived IgG or recombinant IgG are most frequently used for intravenous or subcutaneous administration, whereas a few IgM-based products are available as well. We have established recently that secretory-like IgA and IgM can be produced upon association of plasma-derived polymeric IgA and IgM with a recombinant secretory component. As a next step toward potential future mucosal administration, we sought to unravel the mechanisms by which these secretory Igs protect epithelial cells located at the interface between the environment and the inside of the body. By using polarized epithelial Caco-2 cell monolayers and Shigella flexneri as a model enteropathogen, we found that polyspecific plasma-derived SIgA and SIgM fulfill many protective functions, including dose-dependent recognition of the antigen via formation of aggregated immune complexes, reduction of bacterial infectivity, maintenance of epithelial cell integrity, and inhibition of proinflammatory cytokine/chemokine production by epithelial cells. In this in vitro model devoid of other cellular or molecular interfering partners, IgM and secretory IgM showed stronger bacterial neutralization than secretory IgA. Together, these data suggest that mucosally delivered antibody preparations may be most effective when combining both secretory-like IgA and IgM, which, together, play a crucial role in preserving several levels of epithelial cell integrity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To redirect an ongoing antiviral T-cell response against tumor cells in vivo, we evaluated conjugates consisting of antitumor antibody fragments coupled to class I MHC molecules loaded with immunodominant viral peptides. EXPERIMENTAL DESIGN: First, lymphochoriomeningitis virus (LCMV)-infected C57BL/6 mice were s.c. grafted on the right flank with carcinoembryonic antigen (CEA)-transfected MC38 colon carcinoma cells precoated with anti-CEA x H-2D(b)/GP33 LCMV peptide conjugate and on the left flank with the same cells precoated with control anti-CEA F(ab')(2) fragments. Second, influenza virus-infected mice were injected i.v., to induce lung metastases, with HER2-transfected B16F10 cells, coated with either anti-HER2 x H-2D(b)/NP366 influenza peptide conjugates, or anti-HER2 F(ab')(2) fragments alone, or intact anti-HER2 monoclonal antibody. Third, systemic injections of anti-CEA x H-2D(b) conjugates with covalently cross-linked GP33 peptides were tested for the growth inhibition of MC38-CEA(+) cells, s.c. grafted in LCMV-infected mice. RESULTS: In the LCMV-infected mice, five of the six grafts with conjugate-precoated MC38-CEA(+) cells did not develop into tumors, whereas all grafts with F(ab')(2)-precoated MC38-CEA(+) cells did so (P = 0.0022). In influenza virus-infected mice, the group injected with cells precoated with specific conjugate had seven times less lung metastases than control groups (P = 0.0022 and P = 0.013). Most importantly, systemic injection in LCMV-infected mice of anti-CEA x H-2D(b)/cross-linked GP33 conjugates completely abolished tumor growth in four of five mice, whereas the same tumor grew in all five control mice (P = 0.016). CONCLUSION: The results show that a physiologic T-cell antiviral response in immunocompetent mice can be redirected against tumor cells by the use of antitumor antibody x MHC/viral peptide conjugates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A promising approach to adoptive transfer therapy of tumors is to reprogram autologous T lymphocytes by TCR gene transfer of defined Ag specificity. An obstacle, however, is the undesired pairing of introduced TCRalpha- and TCRbeta-chains with the endogenous TCR chains. These events vary depending on the individual endogenous TCR and they not only may reduce the levels of cell surface-introduced TCR but also may generate hybrid TCR with unknown Ag specificities. We show that such hybrid heterodimers can be generated even by the pairing of human and mouse TCRalpha- and TCRbeta-chains. To overcome this hurdle, we have identified a pair of amino acid residues in the crystal structure of a TCR that lie at the interface of associated TCR Calpha and Cbeta domains and are related to each other by both a complementary steric interaction analogous to a "knob-into-hole" configuration and the electrostatic environment. We mutated the two residues so as to invert the sense of this interaction analogous to a charged "hole-into-knob" configuration. We show that this inversion in the CalphaCbeta interface promotes selective assembly of the introduced TCR while preserving its specificity and avidity for Ag ligand. Noteworthily, this TCR modification was equally efficient on both a Mu and a Hu TCR. Our data suggest that this approach is generally applicable to TCR independently of their Ag specificity and affinity, subset distribution, and species of origin. Thus, this strategy may optimize TCR gene transfer to efficiently and safely reprogram random T cells into tumor-reactive T cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is within the T cell rich zone of secondary lymphoid organs (SLO) that dendritic cells (DC) present the captured pathogens to recirculating T cells in order to activate the rare antigen-specific T cells. While we have made considerable progress in understanding the biology of mobile hematopoietic cells found within SLO, notably DC and lymphocytes, we still have a lot to learn about the sessile stromal cells. This review is focused on the recent progress made in our understanding of the fibroblastic reticular stromal cells that form the 'niches' within the T zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The specificity of recognition of pMHC complexes by T lymphocytes is determined by the V regions of the TCR alpha- and beta-chains. Recent experimental evidence has suggested that Ag-specific TCR repertoires may exhibit a more V alpha- than V beta-restricted usage. Whether V alpha usage is narrowed during immune responses to Ag or if, on the contrary, restricted V alpha usage is already defined at the early stages of TCR repertoire selection, however, has remained unexplored. Here, we analyzed V and CDR3 TCR regions of single circulating naive T cells specifically detected ex vivo and isolated with HLA-A2/melan-A peptide multimers. Similarly to what was previously observed for melan-A-specific Ag-experienced T cells, we found a relatively wide V beta usage, but a preferential V alpha 2.1 usage. Restricted V alpha 2.1 usage was also found among single CD8(+) A2/melan-A multimer(+) thymocytes, indicating that V alpha-restricted selection takes place in the thymus. V alpha 2.1 usage, however, was independent from functional avidity of Ag recognition. Thus, interaction of the pMHC complex with selected V alpha-chains contributes to set the broad Ag specificity, as underlined by preferential binding of A2/melan-A multimers to V alpha 2.1-bearing TCRs, whereas functional outcomes result from the sum of these with other interactions between pMHC complex and TCR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose/Objective: Protective CD8+ T cell responses rely on TCRdependent recognition of immunogenic peptides presented by MHC I. Cytolytic T lymphocytes directed against self/tumor antigens express TCRs of lower affinity/avidity than pathogen-derived T lymphocytes and elicit less protective immune responses due to mechanisms of central and peripheral tolerance. Anti-tumor T cell reactivity can be improved by increasing the TCR-pMHC affinity within physiological limits, while intriguingly further increase in the supraphysiological range (KD < 1 lM) leads to drastic functional declines. We aim at identifying the molecular mechanisms underlying the loss of T cell responsiveness associated with supraphysiological TCRpMHC affinities in order to improve effectiveness of TCR-engineered T cells used in adoptive cell transfer (ACT) cancer immunotherapy. Materials and methods: Using a panel of human CD8+ T cells engineered with TCRs of incremental affinity for the HLA-A2-resticted tumor cancer testis antigen NY-ESO-1, we performed comparative gene expression microarray and TCR-mediated signaling analysis together with membrane receptors level analysis. Results: As compared to cells expressing TCR affinities generating optimal function (KD from 5to 1 lM), those with supraphysiological affinity (KD from 1 lM to 15 nM) had an overall reduced expression of genes implied in signaling, cell activation and proliferation, and showed impaired proximal and distal TCR signaling capacity. This correlated with a decline in surface expression of CD8b, CD28 and activatory TNFR superfamily members. Importantly, expression of inhibitory receptor PD-1 and SHP-1 phosphatase was upregulated in a TCR affinity-dependent manner. Consequently, PD-L1 and SHP-1 blockade restored the function of T cells with high TCRs affinity. Moreover, SHP-1 inhibition also augmented functional efficacy of T cells with TCRs of optimal affinity. Conclusions: Our findings indicate that TCR affinity-associated regulatory mechanisms control T cells responsiveness at various levels to limit potential auto-reactive cytotoxic effects. They also support the development of ACT therapies combined with blockade of inhibitory molecules such as SHP-1 to enhance effectiveness of T cell immunotherapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carcinoembryonic antigen (CEA) is a well-known tumor marker, consisting of a single heavily glycosylated polypeptide chain (mol. wt 200 kD), bound to the cell surface by a phosphatidylinositol-glycan anchor. The hydrophobic domain, encoded by the 3' end of the open reading frame of the CEA gene is not present in the mature protein. This domain is assumed to play an important role in the targeting and attachment of CEA to the cell surface. To verify this hypothesis, a recombinant CEA cDNA lacking the 78 b.p. of the 3' region, encoding the 26 a.a. hydrophobic domain, was prepared in a Rc/CMV expression vector containing a neomycin resistance gene. The construct was transfected by the calcium phosphate technique into CEA-negative human and rat colon carcinoma cell lines. Geneticin-resistant transfectants were screened for the presence of CEA in the supernatant and positive clones were isolated. As determined by ELISA, up to 13 micrograms of recombinant CEA per 10(6) cells was secreted within 72 hr by the human transfected cells and about 1 microgram by the rat cells. For comparison, two human carcinoma cell lines, CO112 and LS174T, selected for high CEA expression, shed about 45 and 128 ng per 10(6) cells within 72 hr, respectively. Western blot analysis showed that the size of the recombinant CEA secreted by the transfected human cells is identical to that of reference CEA purified from human colon carcinomas metastases (about 200 kD). The recombinant CEA synthesized by the transfected rat carcinoma cells has a smaller size (about 144 kD, possibly due to incomplete glycosylation), as has already been observed for CEA produced by rat colon carcinoma cells transfected with full-length CEA cDNA. The 100-fold increase in secretion of rCEA encoded by truncated CEA cDNA transfected in human cells confirms the essential role of this domain in the targeting and anchoring of the glycoprotein. These results suggest a new approach for the in vitro production of large amounts of CEA needed in research laboratories and for immunoassay kits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CD4(+)CD25(+)Foxp3(+) regulatory T cells (Treg) play an important role in the induction and maintenance of immune tolerance. Although adoptive transfer of bulk populations of Treg can prevent or treat T cell-mediated inflammatory diseases and transplant allograft rejection in animal models, optimal Treg immunotherapy in humans would ideally use antigen-specific rather than polyclonal Treg for greater specificity of regulation and avoidance of general suppression. However, no robust approaches have been reported for the generation of human antigen-specific Treg at a practical scale for clinical use. Here, we report a simple and cost-effective novel method to rapidly induce and expand large numbers of functional human alloantigen-specific Treg from antigenically naive precursors in vitro using allogeneic nontransformed B cells as stimulators. By this approach naive CD4(+)CD25(-) T cells could be expanded 8-fold into alloantigen-specific Treg after 3 weeks of culture without any exogenous cytokines. The induced alloantigen-specific Treg were CD45RO(+)CCR7(-) memory cells, and had a CD4(high), CD25(+), Foxp3(+), and CD62L (L-selectin)(+) phenotype. Although these CD4(high)CD25(+)Foxp3(+) alloantigen-specific Treg had no cytotoxic capacity, their suppressive function was cell-cell contact dependent and partially relied on cytotoxic T lymphocyte antigen-4 expression. This approach may accelerate the clinical application of Treg-based immunotherapy in transplantation and autoimmune diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SUMMARY Interest in developing intervention strategies against malaria by targeting the liver stage of the Plasmodium life cycle has been fueled by studies which show that sterile protective immunity can be achieved by immunization with radiation-attenuated sporozoites. Anti-malarial drugs and insecticides have been widely used to control the disease, but in the hope of developing a more cost-effective intervention strategy, vaccine development has taken centre stage in malaria research. There is currently no vaccine against malaria. Attenuated sporozoite-induced immunity is achieved by antibodies and T cells against malaria liver stage antigens, the most abundant being the circumsporozoite protein (CSP), and many vaccine formulations aim at mimicking this immunity. However, the mechanisms by which the antibody and T cell immune responses are generated after infection by sporozoites, or after immunization with different vaccine formulations are still not well understood. The first part of this work aimed at determining the ability of primary hepatocytes from BALB/c mice to process and present CSP-derived peptides after infection with P. berghei sporozoites. Both infected hepatocytes and those traversed by sporozoites during migration were found to be capable of processing and presenting the CSP to specific CD8+ T cells in vitro. The pathway of processing and presentation involved the proteasome, aspartic proteases and transport through a post-Endoplasmic Reticulum (ER) compartment. These results suggest that in vivo, infected hepatocytes contribute to the elicitation and expansion of a T cell response. In the second part, the antibody responses of CB6F1 mice to synthetic peptides corresponding to the N- and C-terminal domains of P. berghei and P. falciparum CS proteins were characterized. Mice were immunized with single peptides or a combination of N- and C-terminal peptides. The peptides were immunogenic in mice and the antisera generated could recognize the native CSP on the sporozoite surface. Antisera generated against the N-terminal peptides or against the combinations inhibited sporozoite invasion of hepatocytes in vitro. In vivo, more mice immunized with single P. berghei peptides were protected from infection upon a challenge with P. berghei sporozoites, than mice immunized with a combination of N- and C-terminal peptides. Furthermore, P. falciparum N-terminal peptides were recognized by serum samples from people living in malaria-endemic areas. Importantly, recognition of a peptide from the N-terminal fragment of the P. falciparum CSP by sera from children living in a malaria-endemic region was associated with protection from disease. These results underline the potential of using such peptides as malaria vaccine candidates. RESUME L'intérêt de développer des stratégies d'intervention contre la malaria ciblant le stade pré-erythrocytaire a été alimenté par des études qui montrent qu'il est possible d'obtenir une immunité par l'injection de sporozoites irradiés. Les médicaments et les insecticides anti-paludiques ont été largement utilisés pour contrôler la maladie, mais dans l'espoir de développer une stratégie d'intervention plus rentable, le développement de vaccins a été placé au centre des recherches actuelles contre la malaria. A l'heure actuelle, il n'existe aucun vaccin contre la malaria. L'immunité induite par les sporozoites irradiés est due à l'effet combiné d'anticorps et de cellules T qui agissent contre les antigènes du stade hépatique dont le plus abondant est la protéine circumsporozoite (CSP). Beaucoup de formulations de vaccin visent à imiter l'immunité induite par les sporozoites irradiés. Cependant, les mécanismes par lesquels les anticorps et les cellules T sont génerés après infection par les sporozoites ou après immunisation avec des formulations de vaccin ne sont pas bien compris. La première partie de ce travail a visé à déterminer la capacité de hépatocytes primaires provenant de souris BALB/c à "processer" et à présenter des peptides dérivés de la CSP, après infection par des sporozoites de Plasmodium berghei. Nous avons montré que in vitro, les hépatocytes infectés et ceux traversés par les sporozoites pendant leur migration étaient capables de "processer" et de présenter la CSP aux cellules T CD8+ spécifiques. La voie de présentation implique le protéasome, les protéases de type aspartique et le transport à travers un compartiment post-reticulum endoplasmique. Ces résultats suggèrent que in vivo, les hépatocytes infectés contribuent à l'induction et à l'expansion d'une réponse immunitaire spécifique aux cellules T. Dans la deuxième partie, nous avons caractérisé les réponses anticorps chez les souris de la souche CB6F1 face aux peptides N- et C-terminaux des protéines circumsporozoites de Plasmodium berghei et Plasmodium falciparum. Les souris ont été immunisées avec les peptides individuellement ou en combinaison. Les peptides utilisés étaient immunogéniques chez les souris, et les anticorps produits pouvaient reconnaître la protéine CSP native à la surface des sporozoites. In vitro, les sera contre les peptides N-teminaux et les combinaisons étaient capables d'inhiber l'invasion de hépatocytes par les sporozoites. In vivo, plus de souris immunisées avec les peptides individuels de la CSP de P. berghei étaient protégées contre la malaria que les souris immunisées avec une combinaison de peptides N- et C-terminaux. De plus, les peptides N-terminaux de la CSP de P. falciparum ont été reconnus par les sera de personnes vivant dans des régions endémiques pour la malaria. Il est intéressant de voir que la reconnaissance d'un peptide N-terminal de P. falciparum par des sera d'enfants habitant dans des régions endémiques était associé à la protection contre la maladie. Ces résultats soulignent le potentiel de ces peptides comme candidats-vaccin contre la malaria.

Relevância:

30.00% 30.00%

Publicador: