257 resultados para Scientific evolution
Resumo:
Similar to aboveground herbivores, root-feeding insects must locate and identify suitable resources. In the darkness of soil, they mainly rely on root chemical exudations and, therefore, have evolved specific behaviours. Because of their impact on crop yield, most of our knowledge in belowground chemical ecology is biased towards soil-dwelling insect pests. Yet the increasing literature on volatile-mediated interactions in the ground underpins the great importance of chemical signalling in this ecosystem and its potential in pest control. Here, we explore the ecology and physiology of these chemically based interactions. An evolutionary approach reveals interesting patterns in the response of insects to particular classes of volatile or water-soluble organic compounds commonly emitted by roots. Food web analyses reasonably support that volatiles are used as long-range cues whereas water-soluble molecules serve in host acceptance/rejection by the insect; however, data are still scarce. As a case study, the chemical ecology of Diabrotica virgifera virgifera is discussed and applications of belowground signalling in pest management are examined. Soil chemical ecology is an expanding field of research and will certainly be a hub of our understanding of soil communities and subsequently of the management of belowground ecosystem services.
Resumo:
The Cretaceous Mont Saint-Hilaire complex (Quebec, Canada) comprises three major rock units that were emplaced in the following sequence: (I) gabbros; (II) diorites; (III) diverse partly agpaitic foid syenites. The major element compositions of the rock-forming minerals, age-corrected Nd and oxygen isotope data for mineral separates and trace element data of Fe-Mg silicates from the various lithologies imply a common source for all units. The distribution of the rare earth elements in clinopyroxene from the gabbros indicates an ocean island basalt type composition for the parental magma. Gabbros record temperatures of 1200 to 800 degrees C, variable silica activities between 0 center dot 7 and 0 center dot 3, and f(O2) values between -0 center dot 5 and +0 center dot 7 (log delta FMQ, where FMQ is fayalite-magnetite-quartz). The diorites crystallized under uniform a(SiO2) (a(SiO2) = 0 center dot 4-0 center dot 5) and more reduced f(O2) conditions (log delta FMQ similar to-1) between similar to 1100 and similar to 800 degrees C. Phase equilibria in various foid syenites indicate that silica activities decrease from 0 center dot 6-0 center dot 3 at similar to 1000 degrees C to < 0 center dot 3 at similar to 550 degrees C. Release of an aqueous fluid during the transition to the hydrothermal stage caused a(SiO2) to drop to very low values, which results from reduced SiO(2) solubilities in aqueous fluids compared with silicate melts. During the hydrothermal stage, high water activities stabilized zeolite-group minerals. Fluid inclusions record a complex post-magmatic history, which includes trapping of an aqueous fluid that unmixed from the restitic foid syenitic magma. Cogenetic aqueous and carbonic fluid inclusions reflect heterogeneous trapping of coexisting immiscible external fluids in the latest evolutionary stage. The O and C isotope characteristics of fluid-inclusion hosted CO(2) and late-stage carbonates imply that the surrounding limestones were the source of the external fluids. The mineral-rich syenitic rocks at Mont Saint-Hilaire evolved as follows: first, alkalis, high field strength and large ion lithophile elements were pre-enriched in the (late) magmatic and subsequent hydrothermal stages; second, percolation of external fluids in equilibrium with the carbonate host-rocks and mixing processes with internal fluids as well as fluid-rock interaction governed dissolution of pre-existing minerals, element transport and precipitation of mineral assemblages determined by locally variable parameters. It is this hydrothermal interplay between internal and external fluids that is responsible for the mineral wealth found at Mont Saint-Hilaire.
Resumo:
Ancient asexuals directly contradict the evolutionary theories that explain why organisms should evolve a sexual life history. The mutualistic, arbuscular mycorrhizal fungi are thought to have been asexual for approximately 400 million years. In the absence of sex, highly divergent descendants of formerly allelic nucleotide sequences are thought to evolve in a genome. In mycorrhizal fungi, where individual offspring receive hundreds of nuclei from the parent, it has been hypothesized that a population of genetically different nuclei should evolve within one individual. Here we use DNA-DNA fluorescent in situ hybridization to show that genetically different nuclei co-exist in individual arbuscular mycorrhizal fungi. We also show that the population genetics techniques used in other organisms are unsuitable for detecting recombination because the assumptions and underlying processes do not fit the fungal genomic structure shown here. Instead we used a phylogenetic approach to show that the within-individual genetic variation that occurs in arbuscular mycorrhizal fungi probably evolved through accumulation of mutations in an essentially clonal genome, with some infrequent recombination events. We conclude that mycorrhizal fungi have evolved to be multi-genomic.
Resumo:
Gene duplications can have a major role in adaptation, and gene families underlying chemosensation are particularly interesting due to their essential role in chemical recognition of mates, predators and food resources. Social insects add yet another dimension to the study of chemosensory genomics, as the key components of their social life rely on chemical communication. Still, chemosensory gene families are little studied in social insects. Here we annotated chemosensory protein (CSP) genes from seven ant genomes and studied their evolution. The number of functional CSP genes ranges from 11 to 21 depending on species, and the estimated rates of gene birth and death indicate high turnover of genes. Ant CSP genes include seven conservative orthologous groups present in all the ants, and a group of genes that has expanded independently in different ant lineages. Interestingly, the expanded group of genes has a differing mode of evolution from the orthologous groups. The expanded group shows rapid evolution as indicated by a high dN/dS (nonsynonymous to synonymous changes) ratio, several sites under positive selection and many pseudogenes, whereas the genes in the seven orthologous groups evolve slowly under purifying selection and include only one pseudogene. These results show that adaptive changes have played a role in ant CSP evolution. The expanded group of ant-specific genes is phylogenetically close to a conservative orthologous group CSP7, which includes genes known to be involved in ant nestmate recognition, raising an interesting possibility that the expanded CSPs function in ant chemical communication.
Resumo:
Arbuscular mycorrhizal fungi (AMF) form extremely important mutualistic symbioses with most plants. Their role in nutrient acquisition, plant community structure, plant diversity, and ecosystem productivity and function has been demonstrated in recent years. New findings on the genetics and biology of AMF also give us a new picture of how these fungi exist in ecosystems. In this article, I bring together some recent findings that indicate that AMF have evolved to contain multiple genomes, that they connect plants together by a hyphal network, and that these different genomes may potentially move around in this network. These findings show the need for more intensive studies on AMF population biology and genetics in order to understand how they have evolved with plants, to better understand their ecological role, and for applying AMF in environmental management programs and in agriculture. A number of key features of AMF population biology have been identified for future studies and most of these concern the need to understand drift, selection, and genetic exchange in multigenomic organisms, a task that has not previously presented itself to evolutionary biologists.
Resumo:
SUMMARY: Research into the evolution of subdivided plant populations has long involved the study of phenotypic variation across plant geographic ranges and the genetic details underlying that variation. Genetic polymorphism at different marker loci has also allowed us to infer the long- and short-term histories of gene flow within and among populations, including range expansions and colonization-extinction dynamics. However, the advent of affordable genome-wide sequences for large numbers of individuals is opening up new possibilities for the study of subdivided populations. In this review, we consider what the new tools and technologies may allow us to do. In particular, we encourage researchers to look beyond the description of variation and to use genomic tools to address new hypotheses, or old ones afresh. Because subdivided plant populations are complex structures, we caution researchers away from adopting simplistic interpretations of their data, and to consider the patterns they observe in terms of the population genetic processes that have given rise to them; here, the genealogical framework of the coalescent will continue to be conceptually and analytically useful.
Resumo:
Variation in protein sequence and gene expression each contribute to phenotypic diversity, and may be subject to similar selective pressures. Eusocial insects are particularly useful for investigating the evolutionary link between protein sequence and condition-dependent patterns of gene expression because gene expression plays a central role in determining differences between eusocial insect sexes and castes. We investigated the relationship between protein coding sequence evolution and gene expression patterns in the fire ants Solenopsis invicta, S. richteri, and their hybrids to gain greater insight into how selection jointly operates on gene expression and coding sequence. We found that genes with high expression variability within castes and sexes were frequently differentially expressed between castes and sexes, as well as between species and hybrids. These results indicate that genes showing high variation in expression in one context also tend to show high variation in expression in other contexts. Our analyses further revealed that variation in both intra- and interspecific gene expression was positively associated with rate of protein sequence evolution in Solenopsis. This suggests that selective constraints on a gene operate both at the level of protein sequence and at the level of gene expression regulation. Overall, our study provides one of the strongest demonstrations that selective constraints mediate both protein sequence evolution and gene expression variability across different biological contexts and timescales.
Resumo:
Colorectal cancer is the second most frequent cancer at death and third most common neoplasm in Switzerland, with about 1600 deaths and 4000 new cases per year, respectively. This study describes the recent trends in colorectal polyps and cancers in the canton of Vaud where a rare population-based series on polyps has been available since 1983. The most salient results are the exponential increase in the detection rates of polyps since the late 19805, associated with a doubling in the proportion of right-sided polyps, whereas colorectal cancer incidence remained constant over the last 25 years. The apparent paradox between the strong increase in detection and resection of polyps, largely due to screening activity, and the absence of reduction in colorectal cancer incidence in the Vaud population is discussed.
Resumo:
BACKGROUND: The outcome of Kaposi sarcoma varies. While many patients do well on highly active antiretroviral therapy, others have progressive disease and need chemotherapy. In order to predict which patients are at risk of unfavorable evolution, we established a prognostic score. METHOD: The survival analysis (Kaplan-Meier method; Cox proportional hazards models) of 144 patients with Kaposi sarcoma prospectively included in the Swiss HIV Cohort Study, from January 1996 to December 2004, was conducted. OUTCOME ANALYZED: use of chemotherapy or death. VARIABLES ANALYZED: demographics, tumor staging [T0 or T1 (16)], CD4 cell counts and HIV-1 RNA concentration, human herpesvirus 8 (HHV8) DNA in plasma and serological titers to latent and lytic antigens. RESULTS: Of 144 patients, 54 needed chemotherapy or died. In the univariate analysis, tumor stage T1, CD4 cell count below 200 cells/microl, positive HHV8 DNA and absence of antibodies against the HHV8 lytic antigen at the time of diagnosis were significantly associated with a bad outcome.Using multivariate analysis, the following variables were associated with an increased risk of unfavorable outcome: T1 [hazard ratio (HR) 5.22; 95% confidence interval (CI) 2.97-9.18], CD4 cell count below 200 cells/microl (HR 2.33; 95% CI 1.22-4.45) and positive HHV8 DNA (HR 2.14; 95% CI 1.79-2.85).We created a score with these variables ranging from 0 to 4: T1 stage counted for two points, CD4 cell count below 200 cells/microl for one point, and positive HHV8 viral load for one point. Each point increase was associated with a HR of 2.26 (95% CI 1.79-2.85). CONCLUSION: In the multivariate analysis, staging (T1), CD4 cell count (<200 cells/microl), positive HHV8 DNA in plasma, at the time of diagnosis, predict evolution towards death or the need of chemotherapy.
Resumo:
Purpose: to describe a case of probable bilateral diffuse uveal melanocytic proliferation (BDUMP) with scleral involvement, free from systemic malignancies and cataract. Methods: fifty months of follow up with recurrent complete ophthalmological examinations, including fundus photography, fluorescein/indocyanine green angiography (FA) and optical coherence tomography (OCT). Investigations also included an electroretinography (ERG) and histological examination of scleral biopsy. Extraocular malignancies were repeatedly searched. Results: the patient was a 61 year-old Italian man with chronic hepatitis type C. At first visit his best corrected visual acuity (BCVA) was 20/32 in OS and 20/25 in OD. Funduscopy showed multiple patch-shaped pigmented alterations involving macular region and mid retinal periphery. FA showed corresponding areas of late-phase hyperfluorescent pinpoints (figure 1a, OS) and intemediate-phase hypocyanescence (figure 1b, OS), with subtle serous neurosensory retinal detachment confirmed by OCT. Photopic and scotopic ERG tested normal. Systemic prednisone was administered for one month without any improvement. After ten months round pigmentary lesions appeared also in superior scleral surface of both eyes. Biopsy allowed to disclose slightly pigmented spindle cells. BCVA worsened for further 10 months, with enlargement of FA alteration areas but lenses still clear. After 30 months spontaneous coalescence and atrophy of retinal lesions started, paralleled by progressive visual recovery. At the end of our follow up BCVA was 20/25 in OU while scleral pigmentary lesions remained unchanged. Conclusions: we report the case of a patient with main features of BDUMP and some unusual findings. Although not all classical diagnostic criteria were fulfilled, the presence of scleral pigmented lesions and spontaneous visual recovery may enlarge clinical spectrum of the disease.
Resumo:
Although dispersal is recognized as a key issue in several fields of population biology (such as behavioral ecology, population genetics, metapopulation dynamics or evolutionary modeling), these disciplines focus on different aspects of the concept and often make different implicit assumptions regarding migration models. Using simulations, we investigate how such assumptions translate into effective gene flow and fixation probability of selected alleles. Assumptions regarding migration type (e.g. source-sink, resident pre-emption, or balanced dispersal) and patterns (e.g. stepping-stone versus island dispersal) have large impacts when demes differ in sizes or selective pressures. The effects of fragmentation, as well as the spatial localization of newly arising mutations, also strongly depend on migration type and patterns. Migration rate also matters: depending on the migration type, fixation probabilities at an intermediate migration rate may lie outside the range defined by the low- and high-migration limits when demes differ in sizes. Given the extreme sensitivity of fixation probability to characteristics of dispersal, we underline the importance of making explicit (and documenting empirically) the crucial ecological/ behavioral assumptions underlying migration models.
Resumo:
Summary : During the evolutionary diversification of organisms, similar ecological constraints led to the recurrent appearances of the same traits (phenotypes) in distant lineages, a phenomenon called convergence. In most cases, the genetic origins of the convergent traits remain unknown, but recent studies traced the convergent phenotypes to recurrent alterations of the same gene or, in a few cases, to identical genetic changes. However, these cases remain anecdotal and there is a need for a study system that evolved several times independently and whose genetic determinism is well resolved and straightforward, such as C4 photosynthesis. This adaptation to warm environments, possibly driven by past atmospheric CO2 decreases, consists in a CO2-concentrating pump, created by numerous morphological and biochemical novelties. All genes encoding C4 enzymes already existed in C3 ancestors, and are supposed to have been recruited through gene duplication followed by neo-functionalization, to acquire the cell specific expression pattern and altered kinetic properties that characterize Ca-specific enzymes. These predictions have so far been tested only in species-poor and ecologically marginal C4 dicots. The monocots, and especially the grass family (Poaceae), the most important C4 family in terms of species number, ecological dominance and economical importance, have been largely under-considered as suitable study systems. This thesis aimed at understanding the evolution of the C4 trait in grasses at a molecular level and to use the genetics of C4 photosynthesis to infer the evolutionary history of the C4 phenotype and its driving selective pressures. A molecular phylogeny of grasses and affiliated monocots identified 17 to 18 independent acquisitions of the C4 pathway in the grass family. A relaxed molecular clock was used to date these events and the first C4 evolution was estimated in the Chloridoideae subfamily, between 32-25 million years ago, at a period when atmospheric CO2 abruptly declined. Likelihood models showed that after the COZ decline the probability of evolving the C4 pathway strongly increased, confirming low CO2 as a likely driver of C4 photosynthesis evolution. In order to depict the genetic changes linked to the numerous C4 origins, genes encoding phopshoenolpyruvate carboxylase (PEPC), the key-enzyme responsible for the initial fixation of atmospheric CO2 in the C4 pathway, were isolated from a large sample of C3 and C4 grasses. Phylogenetic analyses were used to reconstruct the evolutionary history of the PEPC multigene family and showed that the evolution of C4-specific PEPC had been driven by positive selection on 21 codons simultaneously in up to eight C4 lineages. These selective pressures led to numerous convergent genetic changes in many different C4 clades, highlighting the repeatability of some evolutionary processes, even at the molecular level. PEPC C4-adaptive changes were traced and used to show multiple appearances of the C, pathway in clades where species tree inferences were unable to differentiate multiple C4 appearances and a single appearance followed by C4 to C3 reversion. Further investigations of genes involved in some of the C4 subtypes only (genes encoding decarboxylating enzymes NADP-malic enzyme and phosphoenolpyruvate carboxykinase) showed that these C4-enzymes also evolved through strong positive selection and underwent parallel genetic changes during the different Ca origins. The adaptive changes on these subtype-specific C4 genes were used to retrace the history of the C4-subtypes phenotypes, which revealed that the evolution of C4-PEPC and C4-decarboxylating enzymes was in several cases disconnected, emphasizing the multiplicity of the C4 trait and the gradual acquisition of the features that create the CO2-pump. Finally, phylogenetic analyses of a gene encoding the Rubisco (the enzyme responsible for the fixation of CO2 into organic compounds in all photosynthetic organisms) showed that C4 evolution switched the selective pressures on this gene. Five codons were recurrently mutated to adapt the enzyme kinetics to the high CO2 concentrations of C4 photosynthetic cells. This knowledge could be used to introgress C4-like Rubisco in C3 crops, which could lead to an increased yield under predicted future high CO2 atmosphere. Globally, the phylogenetic framework adopted during this thesis demonstrated the widespread occurrence of genetic convergence on C4-related enzymes. The genetic traces of C4 photosynthesis evolution allowed reconstructing events that happened during the last 30 million years and proved the usefulness of studying genes directly responsible for phenotype variations when inferring evolutionary history of a given trait. Résumé Durant la diversification évolutive des organismes, des pressions écologiques similaires ont amené à l'apparition récurrente de certains traits (phénotypes) dans des lignées distantes, un phénomène appelé évolution convergente. Dans la plupart des cas, l'origine génétique des traits convergents reste inconnue mais des études récentes ont montré qu'ils étaient dus dans certains cas à des changements répétés du même gène ou, dans de rares cas, à des changements génétiques identiques. Malgré tout, ces cas restent anecdotiques et il y a un réel besoin d'un système d'étude qui ait évolué indépendamment de nombreuses fois et dont le déterminisme génétique soit clairement identifié. La photosynthèse dite en Ça répond à ces critères. Cette adaptation aux environnements chauds, dont l'évolution a pu être encouragé par des baisses passées de la concentration atmosphérique en CO2, est constituée de nombreuses nouveautés morphologiques et biochimiques qui créent une pompe à CO2. La totalité des gènes codant les enzymes Ç4 étaient déjà présents dans les ancêtres C3. Leur recrutement pour la photosynthèse Ç4 est supposé s'être fait par le biais de duplications géniques suivies par une néo-fonctionnalisation pour leur conférer l'expression cellule-spécifique et les propriétés cinétiques qui caractérisent les enzymes C4. Ces prédictions n'ont jusqu'à présent été testées que dans des familles C4 contenant peu d'espèces et ayant un rôle écologique marginal. Les graminées (Poaceae), qui sont la famille C4 la plus importante, tant en termes de nombre d'espèces que de dominance écologique et d'importance économique, ont toujours été considérés comme un système d'étude peu adapté et ont fait le sujet de peu d'investigations évolutives. Le but de cette thèse était de comprendre l'évolution de la photosynthèse en C4 chez les graminées au niveau génétique et d'utiliser les gènes pour inférer l'évolution du phénotype C4 ainsi que les pressions de sélection responsables de son évolution. Une phylogénie moléculaire de la famille des graminées et des monocotylédones apparentés a identifié 17 à 18 acquisitions indépendantes de la photosynthèse chez les graminées. Grâce à une méthode d'horloge moléculaire relâchée, ces évènements ont été datés et la première apparition C4 a été estimée dans la sous-famille des Chloridoideae, il y a 32 à 25 millions d'années, à une période où les concentrations atmosphériques de CO2 ont décliné abruptement. Des modèles de maximum de vraisemblance ont montré qu'à la suite du déclin de CO2, la probabilité d'évoluer la photosynthèse C4 a fortement augmenté, confirmant ainsi qu'une faible concentration de CO2 est une cause potentielle de l'évolution de la photosynthèse C4. Afin d'identifier les mécanismes génétiques responsables des évolutions répétées de la photosynthèse C4, un segment des gènes codant pour la phosphoénolpyruvate carboxylase (PEPC), l'enzyme responsable de la fixation initiale du CO2 atmosphérique chez les plantes C4, ont été séquencés dans une centaine de graminées C3 et C4. Des analyses phylogénétiques ont permis de reconstituer l'histoire évolutive de la famille multigénique des PEPC et ont montré que l'évolution de PEPC spécifiques à la photosynthèse Ça a été causée par de la sélection positive agissant sur 21 codons, et ce simultanément dans huit lignées C4 différentes. Cette sélection positive a conduit à un grand nombre de changements génétiques convergents dans de nombreux clades différents, ce qui illustre la répétabilité de certains phénomènes évolutifs, et ce même au niveau génétique. Les changements sur la PEPC liés au C4 ont été utilisés pour confirmer des évolutions indépendantes du phénotype C4 dans des clades où l'arbre des espèces était incapable de différencier des apparitions indépendantes d'une seule apparition suivie par une réversion de C4 en C3. En considérant des gènes codant des protéines impliquées uniquement dans certains sous-types C4 (deux décarboxylases, l'enzyme malique à NADP et la phosphoénolpyruvate carboxykinase), des études ultérieures ont montré que ces enzymes C4 avaient elles-aussi évolué sous forte sélection positive et subi des changements génétiques parallèles lors des différentes origines de la photosynthèse C4. Les changements adaptatifs sur ces gènes liés seulement à certains sous-types C4 ont été utilisés pour retracer l'histoire des phénotypes de sous-types C4, ce qui a révélé que les caractères formant le trait C4 ont, dans certains cas, évolué de manière déconnectée. Ceci souligne la multiplicité du trait C4 et l'acquisition graduelle de composants participant à la pompe à CO2 qu'est la photosynthèse C4. Finalement, des analyses phylogénétiques des gènes codant pour la Rubisco (l'enzyme responsable de la fixation du CO2 en carbones organiques dans tous les organismes photosynthétiques) ont montré que l'évolution de la photosynthèse Ça a changé les pressions de sélection sur ce gène. Cinq codons ont été mutés de façon répétée afin d'adapter les propriétés cinétiques de la Rubisco aux fortes concentrations de CO2 présentes dans les cellules photosynthétiques des plantes C4. Globalement, l'approche phylogénétique adoptée durant cette thèse de doctorat a permis de démontré des phénomène fréquents de convergence génétique sur les enzymes liées à la photosynthèse C4. Les traces génétiques de l'évolution de la photosynthèse C4 ont permis de reconstituer des évènements qui se sont produits durant les derniers 30 millions d'années et ont prouvé l'utilité d'étudier des gènes directement responsables des variations phénotypiques pour inférer l'histoire évolutive d'un trait donné.
Resumo:
Background: Contrary to the frequent assumption that alexithymia is a rather static personality trait hampering psychotherapeutic approaches, we have observed that cancer patients who qualify for the criteria of alexithymia may benefit from psychotherapy. Therefore, in patients facing a cancer diagnosis, alexithymia can often be considered as a state due to the threat of the disease (secondary alexithymia).Aims: To identify prevalence of alexithymia in newly diagnosed cancer patients and to document its evolution with and without psychotherapeutic interventions.Methods: Between 2006 and summer 2009, every newpatient of the Oncology Service of the University Hospital Lausanne was invited to benefit from psychotherapeutic support. Accepting patients were randomly assigned to a psychotherapeutic intervention or to a 4-month waiting list. Psychotherapies were formalized as psychodynamic-oriented short interventions (1-4 sessions) or brief psychodynamic psychotherapies (16 sessions). Patients who declined psychotherapeutic support were asked to participate in an observational group. Socio-demographic and medical data, alexithymia (TAS), anxiety and depression (SCL-90, HADS) and quality of life (EORTC) of participants of all groups were recorded at base line and at 1, 4, 8 and 12-months follow-up. Results: Of the 419 patients included, 190 desired psychotherapeutic support (94 were assigned to an immediate and 96 to a delayed intervention) and 229 patients accepted to be followed in the observational group. A very high proportion, almost 2/3 of the patients in all groups, qualified for alexithymia. With regard to the evolution of alexithymia, no significant changes were observed within and between groups and psychological symptoms also remained almost stable.Conclusions: Secondary alexithymia seems to be highly prevalent in newly diagnosed cancer patients. This raises important clinical and scientific questions: are these patients deprived from psychological support? How should interventions be conceptualized? Are interventions necessary and beneficial? Does alexithymia neutralize the effect of interventions on symptoms of anxiety and depression? Which outcome should be chosen for patients with secondary alexithymia?Keywords: Alexithymia, cancer, psycho-oncology, psychotherapy, secondary alexithymia