296 resultados para PROTEIN P62
Resumo:
Quinupristin-dalfopristin (Q-D) synergizes with cefepime for the treatment of methicillin-resistant Staphylococcus aureus (MRSA). Here, we studied whether the synergism was restricted to MRSA and if it extended to non-beta-lactam cell wall inhibitors or to other inhibitors of protein synthesis. Three MRSA and two methicillin-susceptible S. aureus (MSSA) strains were tested, including an isogenic pair of mecA (-)/mecA (+) S. aureus Newman. The drug interactions were determined by fractional inhibitory concentration (FIC) indices and population analysis profiles. The antibacterial drugs that we used included beta-lactam (cefepime) and non-beta-lactam cell wall inhibitors (D-cycloserine, fosfomycin, vancomycin, teicoplanin), inhibitors of protein synthesis (Q-D, erythromycin, chloramphenicol, tetracycline, linezolid, fusidic acid), and polynucleotide inhibitors (cotrimoxazole, ciprofloxacin). The addition of each protein inhibitor to cefepime was synergistic (FIC ≤ 0.5) or additive (FIC > 0.5 but < 1) against MRSA, but mostly indifferent against MSSA (FIC ≥ 1 but ≤ 4). This segregation was not observed after adding cotrimoxazole or ciprofloxacin to cefepime. Population analysis profiles were performed on plates in the presence of increasing concentrations of the cell wall inhibitors plus 0.25 × minimum inhibitory concentration (MIC) of Q-D. Cefepime combined with Q-D was synergistic against MRSA, but D-cycloserine and glycopeptides were not. Thus, the synergism was specific to beta-lactam antibiotics. Moreover, the synergism was not lost against fem mutants, indicating that it acted at another level. The restriction of the beneficial effect to MRSA suggests that the functionality of penicillin-binding protein 2A (PBP2A) was affected, either directly or indirectly. Further studies are necessary in order to provide a mechanism for this positive interaction.
Resumo:
HAMAP (High-quality Automated and Manual Annotation of Proteins-available at http://hamap.expasy.org/) is a system for the automatic classification and annotation of protein sequences. HAMAP provides annotation of the same quality and detail as UniProtKB/Swiss-Prot, using manually curated profiles for protein sequence family classification and expert curated rules for functional annotation of family members. HAMAP data and tools are made available through our website and as part of the UniRule pipeline of UniProt, providing annotation for millions of unreviewed sequences of UniProtKB/TrEMBL. Here we report on the growth of HAMAP and updates to the HAMAP system since our last report in the NAR Database Issue of 2013. We continue to augment HAMAP with new family profiles and annotation rules as new protein families are characterized and annotated in UniProtKB/Swiss-Prot; the latest version of HAMAP (as of 3 September 2014) contains 1983 family classification profiles and 1998 annotation rules (up from 1780 and 1720). We demonstrate how the complex logic of HAMAP rules allows for precise annotation of individual functional variants within large homologous protein families. We also describe improvements to our web-based tool HAMAP-Scan which simplify the classification and annotation of sequences, and the incorporation of an improved sequence-profile search algorithm.
Resumo:
The c-Jun N-terminal kinase (JNK) is critical for cell survival, differentiation, apoptosis and tumorigenesis. This signalling pathway requires the presence of the scaffold protein Islet-Brain1/c-Jun N-terminal kinase interacting protein-1 (IB1/JIP-1). Immunolabeling and in situ hybridisation of bladder sections showed that IB1/JIP-1 is expressed in urothelial cells. The functional role of IB1/JIP-1 in the urothelium was therefore studied in vivo in a model of complete rat bladder outlet obstruction. This parietal stress, which is due to urine retention, reduced the content of IB1/JIP-1 in urothelial cells and consequently induced a drastic increase in JNK activity and AP-1 binding activity. Using a viral gene transfer approach, the stress-induced activation of JNK was prevented by overexpressing IB1/JIP-1. Conversely, the JNK activity was increased in urothelial cells where the IB1/JIP-1 content was experimentally reduced using an antisense RNA strategy. Furthermore, JNK activation was found to be increased in non-stressed urothelial cells of heterozygous mice carrying a selective disruption of the IB1/JIP-1 gene. These data established that mechanical stress in urothelial cells in vivo induces a robust JNK activation as a consequence of regulated expression of the scaffold protein IB1/JIP-1. This result highlights a critical role for that scaffold protein in the homeostasis of the urothelium and unravels a new potential target to regulate the JNK pathway in this tissue.
Resumo:
In response to stress or injury the heart undergoes an adverse remodeling process associated with cardiomyocyte hypertrophy and fibrosis. Transformation of cardiac fibroblasts to myofibroblasts is a crucial event initiating the fibrotic process. Cardiac myofibroblasts invade the myocardium and secrete excess amounts of extracellular matrix proteins, which cause myocardial stiffening, cardiac dysfunctions and progression to heart failure. While several studies indicate that the small GTPase RhoA can promote profibrotic responses, the exchange factors that modulate its activity in cardiac fibroblasts are yet to be identified. In the present study, we show that AKAP-Lbc, an A-kinase anchoring protein (AKAP) with an intrinsic Rho-specific guanine nucleotide exchange factor (GEF) activity, is critical for activating RhoA and transducing profibrotic signals downstream of type I angiotensin II receptors (AT1Rs) in cardiac fibroblasts. In particular, our results indicate that suppression of AKAP-Lbc expression by infecting adult rat ventricular fibroblasts with lentiviruses encoding AKAP-Lbc specific short hairpin (sh) RNAs strongly reduces the ability of angiotensin II to promote RhoA activation, differentiation of cardiac fibroblasts to myofibroblasts, collagen deposition as well as myofibroblast migration. Interestingly, AT1Rs promote AKAP-Lbc activation via a pathway that requires the α subunit of the heterotrimeric G protein G12. These findings identify AKAP-Lbc as a key Rho-guanine nucleotide exchange factor modulating profibrotic responses in cardiac fibroblasts.
Resumo:
Because the eye is protected by ocular barriers but is also easily accessible, direct intravitreous injections of therapeutic proteins allow for specific and targeted treatment of retinal diseases. Low doses of proteins are required in this confined environment and a long time of residency in the vitreous is expected, making the eye the ideal organ for local proteic therapies. Monthly intravitreous injection of Ranibizumab, an anti-VEGF Fab has become the standard of care for patients presenting wet AMD. It has brought the proof of concept that administering proteins into the physiologically low proteic concentration vitreous can be performed safely. Other antibodies, Fab, peptides and growth factors have been shown to exert beneficial effects on animal models when administered within the therapeutic and safe window. To extend the use of such biomolecules in the ophthalmology practice, optimization of treatment regimens and efficacy is required. Basic knowledge remains to be increased on how different proteins/peptides penetrate into the eye and the ocular tissues, distribute in the vitreous, penetrate into the retinal layers and/or cells, are eliminated from the eye or metabolized. This should serve as a basis for designing novel drug delivery systems. The later should be non-or minimally invasive and should allow for a controlled, scalable and sustained release of the therapeutic proteins in the ocular media. This paper reviews the actual knowledge regarding protein delivery for eye diseases and describes novel non-viral gene therapy technologies particularly adapted for this purpose.
Resumo:
Although their contribution remains unclear, lipids may facilitate noncanonical routes of protein internalization into cells such as those used by cell-penetrating proteins. We show that protein C inhibitor (PCI), a serine protease inhibitor (serpin), rapidly transverses the plasma membrane, which persists at low temperatures and enables its nuclear targeting in vitro and in vivo. Cell membrane translocation of PCI necessarily requires phosphatidylethanolamine (PE). In parallel, PCI acts as a lipid transferase for PE. The internalized serpin promotes phagocytosis of bacteria, thus suggesting a function in host defense. Membrane insertion of PCI depends on the conical shape of PE and is associated with the formation of restricted aqueous compartments within the membrane. Gain- and loss-of-function mutations indicate that the transmembrane passage of PCI requires a branched cavity between its helices H and D, which, according to docking studies, precisely accommodates PE. Our findings show that its specific shape enables cell surface PE to drive plasma membrane translocation of cell-penetrating PCI.
Resumo:
MyD88 has a modular organization, an N-terminal death domain (DD) related to the cytoplasmic signaling domains found in many members of the tumor necrosis factor receptor (TNF-R) superfamily, and a C-terminal Toll domain similar to that found in the expanding family of Toll/interleukin-1-like receptors (IL-1R). This dual domain structure, together with the following observations, supports a role for MyD88 as an adapter in IL-1 signal transduction; MyD88 forms homodimers in vivo through DD-DD and Toll-Toll interactions. Overexpression of MyD88 induces activation of the c-Jun N-terminal kinase (JNK) and the transcription factor NF-kappaB through its DD. A point mutation in MyD88, MyD88-lpr (F56N), which prevents dimerization of the DD, also blocks induction of these activities. MyD88-induced NF-kappaB activation is inhibited by the dominant negative versions of TRAF6 and IRAK, which also inhibit IL-1-induced NF-kappaB activation. Overexpression of MyD88-lpr or MyD88-Toll (expressing only the Toll domain) acted to inhibit IL-1-induced NF-kappaB and JNK activation in a 293 cell line overexpressing the IL-1RI. MyD88 coimmunoprecipitates with the IL-1R signaling complex in an IL-1-dependent manner.
Resumo:
The kinesin spindle protein (KSP), a member of the kinesin superfamily of microtubule-based motors, plays a critical role in mitosis as it mediates centrosome separation and bipolar spindle assembly and maintenance. Inhibition of KSP function leads to cell cycle arrest at mitosis with the formation of monoastral microtubule arrays, and ultimately, to cell death. Several KSP inhibitors are currently being studied in clinical trials and provide new opportunities for the development of novel anticancer therapeutics. RNA interference (RNAi) may represent a powerful strategy to interfere with key molecular pathways involved in cancer. In this study, we have established an efficient method for intratumoral delivery of siRNA. We evaluated short interfering RNA (siRNA) duplexes targeting luciferase as surrogate marker or KSP sequence. To examine the potential feasibility of RNAi therapy, the siRNA was transfected into pre-established lesions by means of intratumor electro-transfer of RNA therapeutics (IERT). This technology allowed cell permeation of the nucleic acids and to efficiently knock down gene expression, albeit transiently. The KSP-specific siRNA drastically reduced outgrowth of subcutaneous melanoma and ovarian cancer lesions. Our results show that intratumoral electro-transfer of siRNA is feasible and KSP-specific siRNA may provide a novel strategy for therapeutic intervention. J. Cell. Physiol. 228: 58-64, 2013. © 2012 Wiley Periodicals, Inc.
Resumo:
The circadian clock drives the rhythmic expression of a broad array of genes that orchestrate metabolism, sleep wake behavior, and the immune response. Clock genes are transcriptional regulators engaged in the generation of circadian rhythms. The cold inducible RNA-binding protein (CIRBP) guarantees high amplitude expression of clock. The cytokines TNF and TGFβ impair the expression of clock genes, namely the period genes and the proline- and acidic amino acid-rich basic leucine zipper (PAR-bZip) clock-controlled genes. Here, we show that TNF and TGFβ impair the expression of Cirbp in fibroblasts and neuronal cells. IL-1β, IL-6, IFNα, and IFNγ do not exert such effects. Depletion of Cirbp is found to increase the susceptibility of cells to the TNF-mediated inhibition of high amplitude expression of clock genes and modulates the TNF-induced cytokine response. Our findings reveal a new mechanism of cytokine-regulated expression of clock genes.
Resumo:
Rapport de synthèse : Introduction : La croissance foetale infra-utérine dépend d'un grand nombre de facteurs maternels, placentaires et foetaux. Une inadéquation d'un ou plusieurs de ces facteurs peut induire un retard de croissance infra-utérin (RCIU) ou au contraire une macrosomie. Les principales causes de RCIU comprennent les infections maternelles, l'éclampsie, les cardiovasculopathies maternelles, la toxicomanie, les malformations foetales et les insuffisances placentaires. Les facteurs endocriniens constituent un petit pourcentage des causes de RCIU, mais méritent que l'on s'y intéresse de plus près. Les facteurs hormonaux les plus importants pour la croissance fatale sont l'insuline et les insuline-like growth factors (IGFs) et non l'hormone de croissance (GH) qui joue un rôle majeur dans la croissance postnatale. Notre attention s'est portée sur IGF-1 qui joue un rôle important dans la croissance intrautérine. Sa biodisponibilité dépend de plusieurs protéines plasmatiques, les IGF-binding proteins (IGFBP 1 à 9). IGFBP-3 est la principale de ces IGFBPs, autant d'un point de vue quantitatif que fonctionnel. Nous avons cherché à déterminer si les concentrations d'IGF-1 et d'IGFBP-3 dans le liquide amniotique au début du deuxième trimestre étaient prédictives de la croissance infra-utérine. Les gènes codant pour IGF-1 et IGFBP-3 contenant certaines séquences polymorphiques, nous avons également étudié leur influence sur la croissance foetale. L'analyse du liquide amniotique présente l'avantage de pouvoir être effectuée dès la 14ème semaine d'aménorrhée alors que la biométrie foetale échographique ne permet pas à ce stade de déceler des anomalies de la croissance infra-utérine. Méthode : Nous avons analysé des échantillons de liquide amniotique prélevés entre la 14ème et la 18ème semaine de grossesse chez 196 patientes. Les concentrations d'IGF-1 et d'IGFBP-3 ont été dosées par ELISA, les polymorphismes analysés par PCR. Ces résultats ont été ensuite analysés en fonction du poids de naissance des nouveaux-nés, répartis en trois groupes normal pour l'âge gestationnel (AGA), petit pour l'âge gestationnel (SGA) et grand pour l'âge gestationnel (LGA). Résultats : Les concentrations d'IGFBP3 dans le liquide amniotique sont significativement plus élevées (p = 0.030) dans le groupe SGA par rapport au groupe AGA, d'autant plus quand les taux sont ajustés en fonction de paramètres tels que l'âge gestationnel lors de l'amniocentèse (ANCOVA analysis : p = 0.009). La distribution du polymorphisme VNTR (variable number of tandem repeat) dans la région promotrice d'IGF-1 au sein du groupe SGA est significativement différente de celle du groupe AGA (p = 0.029). En effet, la fréquence de l'association allélique 19CA/20CA est diminuée dans le groupe SGA. Nous n'avons pas identifié de différence de distribution des séquences polymorphiques d'IGFBP-3 entre les différents groupes. Conclusion : Une concentration élevée d'IGFBP-3 dans le liquide amniotique au début du deuxième trimestre est associée à un risque plus élevé de retard de croissance alors que l'association allélique 19CA/20CA dans la région polymorphique IGF-1 VNTR est un facteur protecteur.
Resumo:
AIMS: To develop reporter constructs based on stable and unstable variants of the green fluorescent protein (GFP) for monitoring balanced production of antifungal compounds that are crucial for the capacity of the root-colonizing Pseudomonas fluorescens strain CHA0 to control plant diseases caused by soil-borne pathogenic fungi. METHODS AND RESULTS: Pseudomonas fluorescens CHA0 produces the three antifungal metabolites 2,4-diacetylphloroglucinol (DAPG), pyoluteorin (PLT) and pyrrolnitrin (PRN). The gfp[mut3] and gfp[AAV] reporter genes were fused to the promoter regions of the DAPG, PLT and PRN biosynthetic genes. The reporter fusions were then used to follow the kinetics of expression of the three antifungal metabolites in a microplate assay. DAPG and PLT were found to display an inverse relationship in which each metabolite activates its own biosynthesis while repressing the synthesis of the other metabolite. PRN appears not to be involved in this balance. However, the microbial and plant phenolic metabolite salicylate was found to interfere with the expression of both DAPG and PLT. CONCLUSIONS: The results obtained provide evidence that P. fluorescens CHA0 may keep the antifungal compounds DAPG and PLT at a fine-tuned balance that can be affected by certain microbial and plant phenolics. SIGNIFICANCE AND IMPACT OF THE STUDY: To our knowledge, the present study is the first to use stable and unstable GFP variants to study antibiotic gene expression in a biocontrol pseudomonad. The developed reporter fusions will be a highly valuable tool to study in situ expression of this bacterial biocontrol trait on plant roots, i.e. at the site of pathogen suppression.
Resumo:
Macrophage migration-inhibitory factor (MIF) has recently been identified as a pituitary hormone that functions as a counterregulatory modulator of glucocorticoid action within the immune system. In the anterior pituitary gland, MIF is expressed in TSH- and ACTH-producing cells, and its secretion is induced by CRF. To investigate MIF function and regulation within pituitary cells, we initiated the characterization of the MIF 5'-regulatory region of the gene. The -1033 to +63 bp of the murine MIF promoter was cloned 5' to a luciferase reporter gene and transiently transfected into freshly isolated rat anterior pituitary cells. This construct drove high basal transcriptional activity that was further enhanced after stimulation with CRF or with an activator of adenylate cyclase. These transcriptional effects were associated with a concomitant rise in ACTH secretion in the transfected cells and by an increase in MIF gene expression as assessed by Northern blot analysis. A cAMP-responsive element (CRE) was identified within the MIF promoter region which, once mutated, abolished the cAMP responsiveness of the gene. Using this newly identified CRE, DNA-binding activity was detected by gel retardation assay in nuclear extracts prepared from isolated anterior pituitary cells and AtT-20 corticotrope tumor cells. Supershift experiments using antibodies against the CRE-binding protein CREB, together with competition assays and the use of recombinant CREB, allowed the detection of CREB-binding activity with the identified MIF CRE. These data demonstrate that CREB is the mediator of the CRF-induced MIF gene transcription in pituitary cells through an identified CRE in the proximal region of the MIF promoter.
Resumo:
Type 1 diabetes is characterized by the infiltration of activated leukocytes within the pancreatic islets, leading to beta-cell dysfunction and destruction. The exact role played by interferon-gamma, tumor necrosis factor (TNF)-alpha, and interleukin-1beta in this pathogenic process is still only partially understood. To study cytokine action at the cellular level, we are working with the highly differentiated insulin-secreting cell line, betaTc-Tet. We previously reported that it was susceptible to apoptosis induced by TNF-alpha, in combination with interleukin-1beta and interferon-gamma. Here, we report that cytokine-induced apoptosis was correlated with the activation of caspase-8. We show that in betaTc-Tet cells, overexpression of cFLIP, the cellular FLICE (FADD-like IL-1beta-converting enzyme)-inhibitory protein, completely abolished cytokine-dependent activation of caspase-8 and protected the cells against apoptosis. Furthermore, cFLIP overexpression increased the basal and interleukin-1beta-mediated transcriptional activity of nuclear factor (NF)-kappaB, whereas it did not change cytokine-induced inducible nitric oxide synthase gene transcription and nitric oxide secretion. The presence of cFLIP prevented the weak TNF-alpha-induced reduction in cellular insulin content and secretion; however, it did not prevent the decrease in glucose-stimulated insulin secretion induced by the combined cytokines, in agreement with our previous data demonstrating that interferon-gamma alone could induce these beta-cell dysfunctions. Together, our data demonstrate that overexpression of cFLIP protects mouse beta-cells against TNF-alpha-induced caspase-8 activation and apoptosis and is correlated with enhanced NF-kappaB transcriptional activity, suggesting that cFLIP may have an impact on the outcome of death receptor-triggered responses by directing the intracellular signals from beta-cell death to beta-cell survival.
Resumo:
Insulin resistance in obesity is partly due to diminished glucose transport in myocytes and adipocytes, but underlying mechanisms are uncertain. Insulin-stimulated glucose transport requires activation of phosphatidylinositol (PI) 3-kinase (3K), operating downstream of insulin receptor substrate-1. PI3K stimulates glucose transport through increases in PI-3,4,5-(PO(4))(3) (PIP(3)), which activates atypical protein kinase C (aPKC) and protein kinase B (PKB/Akt). However, previous studies suggest that activation of aPKC, but not PKB, is impaired in intact muscles and cultured myocytes of obese subjects. Presently, we examined insulin activation of glucose transport and signaling factors in cultured adipocytes derived from preadipocytes harvested during elective liposuction in lean and obese women. Relative to adipocytes of lean women, insulin-stimulated [(3)H]2-deoxyglucose uptake and activation of insulin receptor substrate-1/PI3K and aPKCs, but not PKB, were diminished in adipocytes of obese women. Additionally, the direct activation of aPKCs by PIP(3) in vitro was diminished in aPKCs isolated from adipocytes of obese women. Similar impairment in aPKC activation by PIP(3) was observed in cultured myocytes of obese glucose-intolerant subjects. These findings suggest the presence of defects in PI3K and aPKC activation that persist in cultured cells and limit insulin-stimulated glucose transport in adipocytes and myocytes of obese subjects.