242 resultados para OBESE MICE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: It has been previously demonstrated that short-fiber poly-N-acetyl-glucosamine (sNAG) nanofibers specifically interact with platelets, are hemostatic, and stimulate diabetic wound healing by activating angiogenesis, cell proliferation, and reepithelialization. Platelets play a significant physiologic role in wound healing. The influence of altered platelet function by treatment with the ADP inhibitor Clopidogrel (CL) on wound healing and the ability of sNAG to repair wounds in diabetic mice treated with CL were studied.Methods: Dorsal 1 cm2 skin wounds were excised on genetically diabetic 8-week to 12-week-old, Lep/r-db/db male mice, and wound healing kinetics were determined. Microscopic analysis was performed for angiogenesis (PECAM-1) and cell proliferation (Ki67). Mice were either treated with CL (P2Y12 ADP receptor antagonist, CL) or saline solution (NT). CL wounds were also treated with either a single application of topical sNAG (CL-sNAG) or were left untreated (CL-NT).Results: CL treatment did not alter wound healing kinetics, while sNAG induced faster wound closure in CL-treated mice compared with controls. CL treatment of diabetic mice caused an augmentation of cell proliferation and reduced angiogenesis compared with nontreated wounds. However, sNAG reversed the effects of CL on angiogenesis and partially reversed the effect on cell proliferation in the wound beds. The sNAG-treated wounds in CL-treated mice showed higher levels of cell proliferation and not did inhibit angiogenesis.Conclusions: CL treatment of diabetic mice decreased angiogenesis and increased cell proliferation in wounds but did not influence macroscopic wound healing kinetics. sNAG treatment did not inhibit angiogenesis in CL-treated mice and induced faster wound closure; sNAG technology is a promising strategy to facilitate the healing of complex bleeding wounds in CL-treated diabetic patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visceral adiposity is increasingly recognized as a key condition for the development of obesity related disorders, with the ratio between visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) reported as the best correlate of cardiometabolic risk. In this study, using a cohort of 40 obese females (age: 25-45 y, BMI: 28-40 kg/m(2)) under healthy clinical conditions and monitored over a 2 weeks period we examined the relationships between different body composition parameters, estimates of visceral adiposity and blood/urine metabolic profiles. Metabonomics and lipidomics analysis of blood plasma and urine were employed in combination with in vivo quantitation of body composition and abdominal fat distribution using iDXA and computerized tomography. Of the various visceral fat estimates, VAT/SAT and VAT/total abdominal fat ratios exhibited significant associations with regio-specific body lean and fat composition. The integration of these visceral fat estimates with metabolic profiles of blood and urine described a distinct amino acid, diacyl and ether phospholipid phenotype in women with higher visceral fat. Metabolites important in predicting visceral fat adiposity as assessed by Random forest analysis highlighted 7 most robust markers, including tyrosine, glutamine, PC-O 44∶6, PC-O 44∶4, PC-O 42∶4, PC-O 40∶4, and PC-O 40∶3 lipid species. Unexpectedly, the visceral fat associated inflammatory profiles were shown to be highly influenced by inter-days and between-subject variations. Nevertheless, the visceral fat associated amino acid and lipid signature is proposed to be further validated for future patient stratification and cardiometabolic health diagnostics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melanoma antigen recognized by T cells 1 (MART-1) is a melanoma-specific antigen, which has been thoroughly studied in the context of immunotherapy against malignant melanoma and which is found only in the pigment cell lineage. However, its exact function and involvement in pigmentation is not clearly understood. Melanoma antigen recognized by T cells 1 has been shown to interact with the melanosomal proteins Pmel17 and OA1. To understand the function of MART-1 in pigmentation, we developed a new knockout mouse model. Mice deficient in MART-1 are viable, but loss of MART-1 leads to a coat color phenotype, with a reduction in total melanin content of the skin and hair. Lack of MART-1 did not affect localization of melanocyte-specific proteins nor maturation of Pmel17. Melanosomes of hair follicle melanocytes in MART-1 knockout mice displayed morphological abnormalities, which were exclusive to stage III and IV melanosomes. In conclusion, our results suggest that MART-1 is a pigmentation gene that is required for melanosome biogenesis and/or maintenance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One evolutionary explanation for the success of sexual reproduction assumes that sex is an advantage in the coevolutionary arms race between pathogens and hosts. Accordingly, an important criterion in mate choice and maternal selection thereafter could be the allelic specificity at polymorphic loci involved in parasite-host interactions, e.g. the MHC (major histocompatibility complex). The MHC has been found to influence mate choice and selective abortions in mice and humans. However, it could also influence the fertilization process itself, i.e. (i) the oocyte's choice for the fertilizing sperm, and (ii) the outcome of the second meiotic division after the sperm has entered the egg. We tested both hypotheses in an in vitro fertilization experiment with two inbred mouse strains congenic for their MHC. The genotypes of the resulting blastocysts were determined by polymerase chain reaction. We found nonrandom MHC combinations in the blastocysts which may result from both possible choice mechanisms. The outcome changed significantly over time, indicating that a choice for MHC combinations during fertilization may be influenced by one or several external factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnitude of thermogenesis induced by a test meal (17% protein, 54% CHO, and 29% fat) was assessed using indirect calorimetry in six obese women before and after weight loss (mean loss: 11.2 kg) and compared with six nonobese matched controls at rest for 5 h and during and following graded moderate exercise on a bicycle ergometer at three workloads. The test meal contained 60% of the energy expended in basal state over 24 h (736-1020 kcal/meal according to the group). In obese subjects the net absolute increase in energy expenditure (delta EE) in response to the meal was similar between exercising and resting conditions (delta EE = 0.27 vs 0.32 kcal/min, respectively) but tended to be lower in obese women after weight loss (delta EE = 0.19 kcal/min while exercising and 0.25 kcal/min while resting, p less than 0.05) and in control subjects (delta EE = 0.16 vs. 0.25 kcal/min, respectively: p less than 0.05). These results show that the thermogenic response to a meal is not potentiated by moderate exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insulin resistance in obesity is partly due to diminished glucose transport in myocytes and adipocytes, but underlying mechanisms are uncertain. Insulin-stimulated glucose transport requires activation of phosphatidylinositol (PI) 3-kinase (3K), operating downstream of insulin receptor substrate-1. PI3K stimulates glucose transport through increases in PI-3,4,5-(PO(4))(3) (PIP(3)), which activates atypical protein kinase C (aPKC) and protein kinase B (PKB/Akt). However, previous studies suggest that activation of aPKC, but not PKB, is impaired in intact muscles and cultured myocytes of obese subjects. Presently, we examined insulin activation of glucose transport and signaling factors in cultured adipocytes derived from preadipocytes harvested during elective liposuction in lean and obese women. Relative to adipocytes of lean women, insulin-stimulated [(3)H]2-deoxyglucose uptake and activation of insulin receptor substrate-1/PI3K and aPKCs, but not PKB, were diminished in adipocytes of obese women. Additionally, the direct activation of aPKCs by PIP(3) in vitro was diminished in aPKCs isolated from adipocytes of obese women. Similar impairment in aPKC activation by PIP(3) was observed in cultured myocytes of obese glucose-intolerant subjects. These findings suggest the presence of defects in PI3K and aPKC activation that persist in cultured cells and limit insulin-stimulated glucose transport in adipocytes and myocytes of obese subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Study Objectives: "Gentle handling" has become a method of choice for 4-6 h sleep deprivation in mice, with repeated brief handling applied before sleep deprivation to induce habituation. To verify whether mice do indeed habituate was assess how 6 days of repeated brief handling impact on resting behavior, on stress, and on the subunit content of N-methyl-D-aspartate receptors (NMDARs) at hippocampal synapases, which is altered by sleep loss. We discuss whether repeated handling biases the outcome of subsequent sleep deprivation.Design: Adult C5BL/6J mice, maintained on a 12 h-12 h light-dark cycle, were left undistrubed for 3 days, then handled during 3 min daily for 6 days in the middle of the light phase. Mice were continuously monitored for their resting time serum conticosterona levels and synaptic NMDAR subunit composition were quantified.Results: Handling caused a similar to 25% reduction of resting time throughtout all handling days, After six, but not after one day of handling, mice had elevated serum corticosterone levels. Six-day handling augmented the presence of the NR2A subunit of NMDARs at hippocampal synapses.Conclusion: Repeated handling induces behavoir and neurochemical alterations that are absent in undisturbed animals. The presistently reduced resting time and the delayed increase in conticosterone levels indicate that mice do not habituate to handling over a 1-week period. Handling-induced modifications bias effects of gentle handling-induced sleep deprivation on sleep homeostasis, stress, glutamate receptor composition and signaling. A standardization of sleep deprivation procedures involving gengle handling will be important for unequivocally specifying how acute sleep loss affects brain function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During a blood meal, Lutzomyia intermedia sand flies transmit Leishmania braziliensis, a parasite causing tegumentary leishmaniasis. In experimental leishmaniasis, pre-exposure to saliva of most blood-feeding sand flies results in parasite establishment in absence of any skin damages in mice challenged with dermotropic Leishmania species together with saliva. In contrast, pre-immunization with Lu. intermedia salivary gland sonicate (SGS) results in enhanced skin inflammatory exacerbation upon co-inoculation of Lu. intermedia SGS and L. braziliensis. These data highlight potential unique features of both L. braziliensis and Lu. intermedia. In this study, we investigated the genes modulated by Lu. intermedia SGS immunization to understand their potential impact on the subsequent cutaneous immune response following inoculation of both SGS and L. braziliensis. The cellular recruitment and global gene expression profile was analyzed in mice repeatedly inoculated or not with Lu. intermedia. Microarray gene analysis revealed the upregulation of a distinct set of IFN-inducible genes, an immune signature not seen to the same extent in control animals. Of note this INF-inducible gene set was not induced in SGS pre-immunized mice subsequently co-inoculated with SGS and L. braziliensis. These data suggest the parasite prevented the upregulation of this Lu. intermedia saliva-related immune signature. The presence of these IFN-inducible genes was further analyzed in peripheral blood mononuclear cells (PBMCs) sampled from uninfected human individuals living in a L. braziliensis-endemic region of Brazil thus regularly exposed to Lu. intermedia bites. PBMCs were cultured in presence or absence of Lu. intermedia SGS. Using qRT-PCR we established that the IFN-inducible genes induced in the skin of SGS pre-immunized mice, were also upregulated by SGS in PBMCs from human individuals regularly exposed to Lu. intermedia bites, but not in PBMCs of control subjects. These data demonstrate that repeated exposure to Lu. intermedia SGS induces the expression of potentially host-protective IFN-inducible genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dietary obesity is a major factor in the development of type 2 diabetes and is associated with intra-adipose tissue hypoxia and activation of hypoxia-inducible factor 1α (HIF1α). Here we report that, in mice, Hif1α activation in visceral white adipocytes is critical to maintain dietary obesity and associated pathologies, including glucose intolerance, insulin resistance, and cardiomyopathy. This function of Hif1α is linked to its capacity to suppress β-oxidation, in part, through transcriptional repression of sirtuin 2 (Sirt2) NAD(+)-dependent deacetylase. Reduced Sirt2 function directly translates into diminished deacetylation of PPARγ coactivator 1α (Pgc1α) and expression of β-oxidation and mitochondrial genes. Importantly, visceral adipose tissue from human obese subjects is characterized by high levels of HIF1α and low levels of SIRT2. Thus, by negatively regulating the Sirt2-Pgc1α regulatory axis, Hif1α negates adipocyte-intrinsic pathways of fatty acid catabolism, thereby creating a metabolic state supporting the development of obesity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high Km glucose transporter GLUT2 is a membrane protein expressed in tissues involved in maintaining glucose homeostasis, and in cells where glucose-sensing is necessary. In many experimental models of diabetes, GLUT2 gene expression is decreased in pancreatic beta-cells, which could lead to a loss of glucose-induced insulin secretion. In order to identify factors involved in pancreatic beta-cell specific expression of GLUT2, we have recently cloned the murine GLUT2 promoter and identified cis-elements within the 338-bp of the proximal promoter capable of binding islet-specific trans-acting factors. Furthermore, in transient transfection studies, this 338-bp fragment could efficiently drive the expression of the chloramphenicol acetyl transferase (CAT) gene in cell lines derived from the endocrine pancreas, but displayed no promoter activity in non-pancreatic cells. In this report, we tested the cell-specific expression of a CAT reporter gene driven by a short (338 bp) and a larger (1311 bp) fragment of the GLUT2 promoter in transgenic mice. We generated ten transgenic lines that integrated one of the constructs. CAT mRNA expression in transgenic tissues was assessed using the RNAse protection assay and the quantitative reverse transcribed polymerase chain reaction (RT-PCR). Overall CAT mRNA expression for both constructs was low compared to endogenous GLUT2 mRNA levels but the reporter transcript could be detected in all animals in the pancreatic islets and the liver, and in a few transgenic lines in the kidney and the small intestine. The CAT protein was also present in Langerhans islets and in the liver for both constructs by immunocytochemistry. These findings suggest that the proximal 338 bp of the murine GLUT2 promoter contain cis-elements required for the islet-specific expression of GLUT2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose. To investigate the role of the myocyte enhancer factor 2 (Mef2) transcription factor family in retinal diseases, Mef2c expression was assessed during retinal degeneration in the Rpe65(-/-) mouse model of Leber's congenital amaurosis (LCA). Mef2c-dependent expression of photoreceptor-specific genes was further addressed. Methods. Expression of Mef2 members was analyzed by oligonucleotide microarray, quantitative PCR (qPCR) and in situ hybridization. Mef2c-dependent transcriptional activity was assayed by luciferase assay in HEK293T cells. Results. Mef2c was the only Mef2 member markedly downregulated during retinal degeneration in Rpe65(-/-) mice. Mef2c mRNA level was decreased by more than 2 fold at 2 and 4 months and by 3.5 fold at 6 months in retinas of Rpe65(-/-) mice. Downregulation of Mef2c at the protein level was confirmed in Rpe65(-/-) retinas. The decrease in Mef2c mRNA levels in the developing Rpe65(-/-) retinas, from post-natal day (P)13 onward, was concomitant with the decreased expression of the rod-specific transcription factors Nrl and Nr2e3. Nrl was further shown to drive Mef2c transcriptional activity, supporting a physiological role for Mef2c in the retina. In addition, Mef2c appeared to act as a transcriptional repressor of its own expression, as well as those of the retina-specific retinal G-protein coupled receptor (Rgr), rhodopsin and M-opsin genes. Conclusions. These findings highlight the early altered regulation of the rod-specific transcriptional network in Rpe65-related disease. They further indicate that Mef2c may act as a novel transcription factor involved in the development and the maintenance of photoreceptor cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To compare the mechanical external work (Wext ) and pendular energy transduction (Rstep ) at spontaneous walking speed (Ss ) in individuals with Prader-Willi syndrome (PWS) versus subjects with nonsyndromal obesity (OB) to investigate whether the early onset of obesity allows PWS subjects to adopt energy conserving gait mechanics. DESIGN AND METHODS: Wext and Rstep were computed using kinematic data acquired by an optoelectronic system and compared in 15 PWS (BMI = 39.5 ± 1.8 kg m(-2) ; 26.7 ± 1.5 year) and 15 OB (BMI = 39.3 ± 1.0 kg m(-2) ; 28.7 ± 1.9 year) adults matched for gender, age and BMI and walking at Ss . RESULTS: Ss was significantly lower in PWS (0.98 ± 0.03 m s(-1) ) than in OB (1.20 ± 0.02 m s(-1) ; P < 0.001). There were no significant differences in Wext per kilogram between groups (PWS: 0.37 ± 0.04 J kg(-1) m(-1) ; OB: 0.40 ± 0.05 J kg(-1) m(-1) ; P = 0.66) and in Rstep (PWS: 69.9 ± 2.9%; OB: 67.7 ± 2.4%; P = 0.56). However, Rstep normalized to Froude number (Rstep /Fr) was significantly greater in PWS (6.0 ± 0.6) than in OB (3.8 ± 0.2; P = 0.001). Moreover, Rstep /Fr was inversely correlated with age of obesity onset (r = -0.49; P = 0.006) and positively correlated with obesity duration (r = 0.38; P = 0.036). CONCLUSION: Individuals with PWS seem to alter their gait to improve pendular energy transduction as a result of precocious and chronic adaptation to loading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salt taste in mammals can trigger two divergent behavioural responses. In general, concentrated saline solutions elicit robust behavioural aversion, whereas low concentrations of NaCl are typically attractive, particularly after sodium depletion. Notably, the attractive salt pathway is selectively responsive to sodium and inhibited by amiloride, whereas the aversive one functions as a non-selective detector for a wide range of salts. Because amiloride is a potent inhibitor of the epithelial sodium channel (ENaC), ENaC has been proposed to function as a component of the salt-taste-receptor system. Previously, we showed that four of the five basic taste qualities-sweet, sour, bitter and umami-are mediated by separate taste-receptor cells (TRCs) each tuned to a single taste modality, and wired to elicit stereotypical behavioural responses. Here we show that sodium sensing is also mediated by a dedicated population of TRCs. These taste cells express the epithelial sodium channel ENaC, and mediate behavioural attraction to NaCl. We genetically engineered mice lacking ENaCalpha in TRCs, and produced animals exhibiting a complete loss of salt attraction and sodium taste responses. Together, these studies substantiate independent cellular substrates for all five basic taste qualities, and validate the essential role of ENaC for sodium taste in mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glutathione (GSH), a major redox regulator and anti-oxidant, is decreased in cerebrospinal fluid and prefrontal cortex of schizophrenia patients. The gene of the key GSH-synthesizing enzyme, glutamate-cysteine ligase, modifier (GCLM) subunit, is associated with schizophrenia, suggesting that the deficit in the GSH system is of genetic origin. Using the GCLM knock-out (KO) mouse model with 60% decreased brain GSH levels, we have shown that redox dysregulation results in abnormal brain morphology and function. Current theory holds that schizophrenia is a developmental disease involving progressive anatomical and functional brain pathology. Here, we used GCLM KO mice to investigate the impact of a genetically dysregulated redox system on the neurochemical profile of the developing brain. The anterior and posterior cortical neurochemical profile of male and female GCLM KO, heterozygous and wildtype mice was determined by localised in vivo 1H NMR spectroscopy at 14.1 T (Varian/Magnex spectrometer) on post-natal days 10, 20, 30, 60 and 90. We show, for the first time, (1) that high quality 1H NMR spectra can be acquired from early developing mouse brains and (2) that recurrent anaesthesia by itself when administered at the same developmental days has no adverse effects on brain metabolites nor on adult behaviour. (3) Most importantly, our results reveal genotype and age specific changes for a number of metabolites revealing insight into normal brain development and about the impact of genetic GSH dysregulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the preceding article, we demonstrated that activation of the hepatoportal glucose sensor led to a paradoxical development of hypoglycemia that was associated with increased glucose utilization by a subset of tissues. In this study, we tested whether GLUT2 plays a role in the portal glucose-sensing system that is similar to its involvement in pancreatic beta-cells. Awake RIPGLUT1 x GLUT2-/- and control mice were infused with glucose through the portal (Po-) or the femoral (Fe-) vein for 3 h at a rate equivalent to the endogenous glucose production rate. Blood glucose and plasma insulin concentrations were continuously monitored. Glucose turnover, glycolysis, and glycogen synthesis rates were determined by the 3H-glucose infusion technique. We showed that portal glucose infusion in RIPGLUT1 x GLUT24-/- mice did not induce the hypoglycemia observed in control mice but, in contrast, led to a transient hyperglycemic state followed by a return to normoglycemia; this glycemic pattern was similar to that observed in control Fe-mice and RIPGLUT1 x GLUT2-/- Fe-mice. Plasma insulin profiles during the infusion period were similar in control and RIPGLUT1 x GLUT2-/- Po- and Fe-mice. The lack of hypoglycemia development in RIPGLUT1 x GLUT2-/- mice was not due to the absence of GLUT2 in the liver. Indeed, reexpression by transgenesis of this transporter in hepatocytes did not restore the development of hypoglycemia after initiating portal vein glucose infusion. In the absence of GLUT2, glucose turnover increased in Po-mice to the same extent as that in RIPGLUT1 x GLUT2-/- or control Fe-mice. Finally, co-infusion of somatostatin with glucose prevented development of hypoglycemia in control Po-mice, but it did not affect the glycemia or insulinemia of RIPGLUT1 x GLUT2-/- Po-mice. Together, our data demonstrate that GLUT2 is required for the function of the hepatoportal glucose sensor and that somatostatin could inhibit the glucose signal by interfering with GLUT2-expressing sensing units.