235 resultados para Electroencephalogram (EEG)
Resumo:
Brain injury is frequently observed after sepsis and may be primarily related to the direct effects of the septic insult on the brain (e.g., brain edema, ischemia, seizures) or to secondary/indirect injuries (e.g., hypotension, hypoxemia, hypocapnia, hyperglycemia). Management of brain injury in septic patients is first focused to exclude structural intracranial complications (e.g., ischemic/hemorrhagic stroke) and possible confounders (e.g., electrolyte alterations or metabolic disorders, such as dysglycemia). Sepsis-associated brain dysfunction is frequently a heterogeneous syndrome. Despite increasing understanding of main pathophysiologic determinants, therapy is essentially limited to protect the brain against further cerebral damage, by way of "simple" therapeutic manipulations of cerebral perfusion and oxygenation and by avoiding over-sedation. Non-invasive monitoring of cerebral perfusion and oxygenation with transcranial Doppler (TCD) and near-infrared spectroscopy (NIRS) is feasible in septic patients. Electroencephalography (EEG) allows detection of sepsis-related seizures and holds promise also as sedation monitoring. Brain CT-scan detects intra-cerebral structural lesions, while magnetic resonance imaging (MRI) provides important insights into primary mechanisms of sepsis-related direct brain injury, (e.g., cytotoxic vs. vasogenic edema) and the development of posterior reversible encephalopathy. Together with EEG and evoked potentials (EP), MRI is also important for coma prognostication. Emerging clinical evidence suggests monitoring of the brain in septic patients can be implemented in the ICU. The objective of this review was to summarize recent clinical data about the role of brain monitoring - including TCD, NIRS, EEG, EP, CT, and MRI - in patients with sepsis and to illustrate its potential utility for the diagnosis, management and prognostication.
Resumo:
RATIONALE: Limited-channel portable monitors (PMs) are increasingly used as an alternative to polysomnography (PSG) for the diagnosis of obstructive sleep apnoea (OSA). However, recommendations for the scoring of PM recordings are still lacking. Pulse-wave amplitude (PWA) drops, considered as surrogates for EEG arousals, may increase the detection sensitivity for respiratory events in PM recordings. OBJECTIVES: To investigate the performance of four different hypopnoea scoring criteria, using 3% or 4% oxygen desaturation levels, including or not PWA drops as surrogates for EEG arousals, and to determine the impact of measured versus reported sleep time on OSA diagnosis. METHODS: Subjects drawn from a population-based cohort underwent a complete home PSG. The PSG recordings were scored using the 2012 American Academy of Sleep Medicine criteria to determine the apnoea-hypopnoea index (AHI). Recordings were then rescored using only parameters available on type 3 PM devices according to different hypopnoea criteria and patients-reported sleep duration to determine the 'portable monitor AHIs' (PM-AHIs). MAIN RESULTS: 312 subjects were included. Overall, PM-AHIs showed a good concordance with the PSG-based AHI although it tended to slightly underestimate it. The PM-AHI using 3% desaturation without PWA drops showed the best diagnostic accuracy for AHI thresholds of ≥5/h and ≥15/h (correctly classifying 94.55% and 93.27% of subjects, respectively, vs 80.13% and 87.50% with PWA drops). There was a significant but modest correlation between PWA drops and EEG arousals (r=0.20, p=0.0004). CONCLUSION: Interpretation of PM recordings using hypopnoea criteria which include 3% desaturation without PWA drops as EEG arousal surrogate showed the best diagnosis accuracy compared with full PSG.
Resumo:
OBJECTIVES: The aims of this study were to determine the etiology, clinical features, and predictors of outcome of new-onset refractory status epilepticus. METHODS: Retrospective review of patients with refractory status epilepticus without etiology identified within 48 hours of admission between January 1, 2008, and December 31, 2013, in 13 academic medical centers. The primary outcome measure was poor functional outcome at discharge (defined as a score >3 on the modified Rankin Scale). RESULTS: Of 130 cases, 67 (52%) remained cryptogenic. The most common identified etiologies were autoimmune (19%) and paraneoplastic (18%) encephalitis. Full data were available in 125 cases (62 cryptogenic). Poor outcome occurred in 77 of 125 cases (62%), and 28 (22%) died. Predictors of poor outcome included duration of status epilepticus, use of anesthetics, and medical complications. Among the 63 patients with available follow-up data (median 9 months), functional status improved in 36 (57%); 79% had good or fair outcome at last follow-up, but epilepsy developed in 37% with most survivors (92%) remaining on antiseizure medications. Immune therapies were used less frequently in cryptogenic cases, despite a comparable prevalence of inflammatory CSF changes. CONCLUSIONS: Autoimmune encephalitis is the most commonly identified cause of new-onset refractory status epilepticus, but half remain cryptogenic. Outcome at discharge is poor but improves during follow-up. Epilepsy develops in most cases. The role of anesthetics and immune therapies warrants further investigation.
Resumo:
Our inability to adequately treat many patients with refractory epilepsy caused by focal cortical dysplasia (FCD), surgical inaccessibility and failures are significant clinical drawbacks. The targeting of physiologic features of epileptogenesis in FCD and colocalizing functionality has enhanced completeness of surgical resection, the main determinant of outcome. Electroencephalography (EEG)-functional magnetic resonance imaging (fMRI) and magnetoencephalography are helpful in guiding electrode implantation and surgical treatment, and high-frequency oscillations help defining the extent of the epileptogenic dysplasia. Ultra high-field MRI has a role in understanding the laminar organization of the cortex, and fluorodeoxyglucose-positron emission tomography (FDG-PET) is highly sensitive for detecting FCD in MRI-negative cases. Multimodal imaging is clinically valuable, either by improving the rate of postoperative seizure freedom or by reducing postoperative deficits. However, there is no level 1 evidence that it improves outcomes. Proof for a specific effect of antiepileptic drugs (AEDs) in FCD is lacking. Pathogenic mutations recently described in mammalian target of rapamycin (mTOR) genes in FCD have yielded important insights into novel treatment options with mTOR inhibitors, which might represent an example of personalized treatment of epilepsy based on the known mechanisms of disease. The ketogenic diet (KD) has been demonstrated to be particularly effective in children with epilepsy caused by structural abnormalities, especially FCD. It attenuates epigenetic chromatin modifications, a master regulator for gene expression and functional adaptation of the cell, thereby modifying disease progression. This could imply lasting benefit of dietary manipulation. Neurostimulation techniques have produced variable clinical outcomes in FCD. In widespread dysplasias, vagus nerve stimulation (VNS) has achieved responder rates >50%; however, the efficacy of noninvasive cranial nerve stimulation modalities such as transcutaneous VNS (tVNS) and noninvasive (nVNS) requires further study. Although review of current strategies underscores the serious shortcomings of treatment-resistant cases, initial evidence from novel approaches suggests that future success is possible.
Resumo:
Over the past two decades, electrophysiology has undergone unprecedented changes thanks to technical improvements, which simplify measurement and analysis and allow more compact data storage. This book covers in detail the spectrum of electrophysiology applications in patients with disorders of consciousness. Its content spans from clinical aspects of the management of subjects in the intensive care unit, including EEG, evoked potentials and related implications in terms of prognosis and patient management to research applications in subjects with ongoing consciousness impairment. While the first section provides up-to-date information for the interested clinician, the second part highlights the latest developments in this exciting field. The book comprehensively combines clinical and research information related to neurophysiology in disorder-of- consciousness patients, making it an easily accessible reference for neuro-ICU specialists, epileptologists and clinical neurophysiologists as well as researchers utilizing EEG and event-related potentials.
Resumo:
In humans, action errors and perceptual novelty elicit activity in a shared frontostriatal brain network, allowing them to adapt their ongoing behavior to such unexpected action outcomes. Healthy and pathologic aging reduces the integrity of white matter pathways that connect individual hubs of such networks and can impair the associated cognitive functions. Here, we investigated whether structural disconnection within this network because of small-vessel disease impairs the neural processes that subserve motor slowing after errors and novelty (post-error slowing, PES; post-novel slowing, PNS). Participants with intact frontostriatal circuitry showed increased right-lateralized beta-band (12-24 Hz) synchrony between frontocentral and frontolateral electrode sites in the electroencephalogram after errors and novelty, indexing increased neural communication. Importantly, this synchrony correlated with PES and PNS across participants. Furthermore, such synchrony was reduced in participants with frontostriatal white matter damage, in line with reduced PES and PNS. The results demonstrate that behavioral change after errors and novelty result from coordinated neural activity across a frontostriatal brain network and that such cognitive control is impaired by reduced white matter integrity.
Resumo:
STUDY OBJECTIVES: The nuclear receptor REV-ERBα is a potent, constitutive transcriptional repressor critical for the regulation of key circadian and metabolic genes. Recently, REV-ERBα's involvement in learning, neurogenesis, mood, and dopamine turnover was demonstrated suggesting a specific role in central nervous system functioning. We have previously shown that the brain expression of several core clock genes, including Rev-erbα, is modulated by sleep loss. We here test the consequences of a loss of REV-ERBα on the homeostatic regulation of sleep. METHODS: EEG/EMG signals were recorded in Rev-erbα knockout (KO) mice and their wild type (WT) littermates during baseline, sleep deprivation, and recovery. Cortical gene expression measurements after sleep deprivation were contrasted to baseline. RESULTS: Although baseline sleep/wake duration was remarkably similar, KO mice showed an advance of the sleep/wake distribution relative to the light-dark cycle. After sleep onset in baseline and after sleep deprivation, both EEG delta power (1-4 Hz) and sleep consolidation were reduced in KO mice indicating a slower increase of homeostatic sleep need during wakefulness. This slower increase might relate to the smaller increase in theta and gamma power observed in the waking EEG prior to sleep onset under both conditions. Indeed, the increased theta activity during wakefulness predicted delta power in subsequent NREM sleep. Lack of Rev-erbα increased Bmal1, Npas2, Clock, and Fabp7 expression, confirming the direct regulation of these genes by REV-ERBα also in the brain. CONCLUSIONS: Our results add further proof to the notion that clock genes are involved in sleep homeostasis. Because accumulating evidence directly links REV-ERBα to dopamine signaling the altered homeostatic regulation of sleep reported here are discussed in that context.
Resumo:
L'encéphalopathie post-anoxique après arrêt cardiaque (AC) est une cause féquente d'admission pour coma en réanimation. Depuis les recommandations de 2003, l'hypothermie thérapeutique (HT) est devenue un standard de traitement après AC et est à l'origine de l'amélioration du pronostic au cours de cette derniere décennie. Les élements prédicteurs de pronostic validés par l'Académie Américaine de Neurologie avant l'ère de l'HT sont devenus moins précis. En effet, l'HT et la sédation retardent la reprise de la réponse motrice et peuvent altérer la valeur prédictive des réflexes du tronc cérébral. Une nouvelle approche est nécessaire pour établir un pronostic après AC et HT. L'enregistrement (pendant l'HTou peu après) d'une activité électroencéphalographique réactive et/ou continue est un bon prédicteur de récupération neurologique favorable après AC. Au contraire, la présence d'un tracé non réactif ou discontinu de type burst-suppression, avec une réponse N20 absente bilatérale aux potentiels évoqués somatosensoriels, sont presqu'à 100 % prédictifs d'un coma irréversible déjà à 48 heures après AC. L'HT modifie aussi la valeur prédictive de l'énolase neuronale spécifique (NSE), principal biomarqueur sérique de la lésion cérébrale post-anoxique. Un réveil avec bonne récupération neurologique a été récemment observé par plusieurs groupes chez des patients présentant des valeurs de NSE>33 μg/L à 48-72 heures : ce seuil ne doit pas être utilisé seul pour guider le traitement. L'imagerie par résonance magnétique de diffusion peut aider à prédire les séquelles neurologiques à long terme. Un réveil chez les patients en coma post-anoxique est de plus en plus observé, malgré l'absence précoce de signes moteurs et une élévation franche des biomarqueurs neuronaux. En 2014, une nouvelle approche multimodale du pronostic est donc nécessaire, pour optimiser la prédiction d'une évolution clinique favorable après AC. Hypoxic-ischemic encephalopathy after cardiac arrest (CA) is a frequent cause of intensive care unit (ICU) admission. Incorporated in all recent guidelines, therapeutic hypothermia (TH) has become a standard of care and has contributed to improve prognosis after CA during the past decade. The accuracy of prognostic predictors validated in 2006 by the American Academy of Neurology before the era of TH is less accurate. Indeed, TH and sedation may delay the recovery of motor response and alter the predictive value of brainstem reflexes. A new approach is needed to accurately establish prognosis after CA and TH. A reactive and/or continuous electroencephalogram background (during TH or shortly thereafter) strongly predicts good outcome. On the contrary, unreactive/spontaneous burst-suppression electroencephalogram pattern, together with absent N20 on somatosensory evoked potentials, is almost 100% predictive of irreversible coma. TH also affects the predictive value of neuronspecific enolase (NSE), the main serum biomarker of postanoxic injury. A good outcome can occur despite NSE levels >33 μg/L, so this cutoff value should not be used alone to guide treatment. Diffusion magnetic resonance imagery may help predict long-term neurological sequelae. Awakening from postanoxic coma is increasingly observed, despite the absence of early motor signs and pathological elevation of NSE. In 2014, a multimodal approach to prognosis is recommended to optimize the prediction of outcome after CA.
Resumo:
BACKGROUND: Psychogenic non-epileptic seizures (PNES) are involuntary paroxysmal events that are unaccompanied by epileptiform EEG discharges. We hypothesised that PNES are a disorder of distributed brain networks resulting from their functional disconnection.The disconnection may underlie a dissociation mechanism that weakens the influence of unconsciously presented traumatising information but exerts maladaptive effects leading to episodic failures of behavioural control manifested by psychogenic 'seizures'. METHODS: To test this hypothesis, we compared functional connectivity (FC) derived from resting state high-density EEGs of 18 patients with PNES and 18 age-matched and gender-matched controls. To this end, the EEGs were transformed into source space using the local autoregressive average inverse solution. FC was estimated with a multivariate measure of lagged synchronisation in the θ, α and β frequency bands for 66 brain sites clustered into 18 regions. A multiple comparison permutation test was applied to deduce significant between-group differences in inter-regional and intraregional FC. RESULTS: The significant effect of PNES-a decrease in lagged FC between the basal ganglia and limbic, prefrontal, temporal, parietal and occipital regions-was found in the α band. CONCLUSION: We believe that this finding reveals a possible neurobiological substrate of PNES, which explains both attenuation of the effect of potentially disturbing mental representations and the occurrence of PNES episodes. By improving understanding of the aetiology of this condition, our results suggest a potential refinement of diagnostic criteria and management principles.