318 resultados para Colonic aberrant crypt foci
Resumo:
Pooled F(ab')2 fragments of three MAbs against distinct epitopes of carcinoembryonic antigen (CEA) were used for radioimmunotherapy of nude mice bearing a subcutaneous human colon carcinoma xenograft. 9-10 d after transplantation when tumor nodules were in exponential growth, 36 mice were treated by intravenous injection of different amounts of 131I-labeled MAb F(ab')2. All 14 mice injected with a single dose of 2,200 (n = 10) or 2,800 microCi (n = 4) showed complete tumor remission. 8 of the 10 mice treated with 2,200 microCi survived in good health for 1 yr when they were killed and shown to be tumor free. Four of nine other mice treated with four fractionated doses of 400 microCi showed no tumor relapse for more than 9 mo. In contrast, all 15 mice injected with 1,600-3,000 microCi 131I-control IgG F(ab')2 showed tumor growth retardation of only 1-4 wk, and 15 of 16 mice injected with unlabeled anti-CEA MAb F(ab')2 showed unmodified tumor progression as compared with untreated mice. From tissue radioactivity distributions it was calculated that by an injection of 2,200 microCi 131I-MAb F(ab')2 a mean dose of 8,335 rad was selectively delivered to the tumor, while the tissue-absorbed radiation doses for the normal organs were: peripheral blood, 2,093; stomach, 1,668; kidney, 1,289; lung, 1,185; liver, 617; spleen, 501; small intestine, 427; large intestine, 367; bone, 337; and muscle, 198. These treatments were well tolerated since out of 19 mice with complete tumor remission only 4 required bone marrow transplantation and 17 were in good health for 6-12 mo of observation. The results demonstrate the selective destruction of established human colon carcinoma transplants by intravenous injection of either single or fractionated doses of 131I-MAb F(ab')2.
Resumo:
BACKGROUND: Visceral leishmaniasis is a parasitic disease associated with high mortality. The most important foci of visceral leishmaniasis in Ethiopia are in the Northwest and are predominantly associated with high rates of HIV co-infection. Co-infection of visceral leishmaniasis patients with HIV results in higher mortality, treatment failure and relapse. We have previously shown that arginase, an enzyme associated with immunosuppression, was increased in patients with visceral leishmaniasis and in HIV seropositive patients; further our results showed that high arginase activity is a marker of disease severity. Here, we tested the hypothesis that increased arginase activities associated with visceral leishmaniasis and HIV infections synergize in patients co-infected with both pathogens. METHODOLOGY/PRINCIPAL FINDINGS: We recruited a cohort of patients with visceral leishmaniasis and a cohort of patients with visceral leishmaniasis and HIV infection from Gondar, Northwest Ethiopia, and recorded and compared their clinical data. Further, we measured the levels of arginase activity in the blood of these patients and identified the phenotype of arginase-expressing cells. Our results show that CD4(+) T cell counts were significantly lower and the parasite load in the spleen was significantly higher in co-infected patients. Moreover, our results demonstrate that arginase activity was significantly higher in peripheral blood mononuclear cells and plasma of co-infected patients. Finally, we identified the cells-expressing arginase in the PBMCs as low-density granulocytes. CONCLUSION: Our results suggest that increased arginase might contribute to the poor disease outcome characteristic of patients with visceral leishmaniasis and HIV co-infection.
Resumo:
SUMMARYAs a result of evolution, humans are equipped with an intricate but very effective immune system with multiple defense mechanisms primarily providing protection from infections. This system comprises various cell types, including T-lymphocytes, which are able to recognize and directly kill infected cells. T-cells are not only able to recognize cells carrying foreign antigens, such as virus-infected cells, but also autologous cells. In autoimmune diseases, e.g. multiple sclerosis, T- cells attack autologous cells and cause the destruction of healthy tissue. To prevent aberrant immune reactions, but also to prevent damage caused by an overreacting immune response against foreign targets, there are multiple systems in place that attenuate T-cell responses.By contrast, anti-self immune responses may be highly welcome in malignant diseases. It has been demonstrated that activated T-cells are able to recognize and lyse tumor cells, and may even lead to successful cure of cancer patients. Through vaccination, and especially with the help of powerful adjuvants, frequencies of tumor-reactive T-cells can be augmented drastically. However, the efficacy of anti-tumor responses is diminished by the same checks and balances preventing the human body from harm induced by overly activated T-cells in infections.In the context of my thesis, we studied spontaneous and vaccination induced T-cell responses in melanoma patients. The aim of my studies was to identify situations of T-cell suppression, and pinpoint immune suppressive mechanisms triggered by malignant diseases. We applied recently developed techniques such as multiparameter flow cytometry and gene arrays, allowing the characterization of tumor-reactive T-cells directly ex vivo. In our project, we determined functional capabilities, protein expression, and gene expression profiles of small numbers of T- cells from metastatic tissue and blood obtained from healthy donors and melanoma patients. We found evidence that tumor-specific T-cells were functionally efficient effector cells in peripheral blood, but severely exhausted in metastatic tissue. Our molecular screening revealed the upregulation of multiple inhibitory receptors on tumor-specific T-cells, likely implied in T-cell exhaustion. Functional attenuation of tumor-specific T-cells via inhibitory receptors depended on the anatomical location and immune suppressive mechanisms in the tumor microenvironment, which appeared more important than self-tolerance and anergy mechanisms. Our data reveal novel potential targets for cancer therapy, and contribute to the understanding of cancer biology.RÉSUMÉAu cours de l'évolution, les êtres humains se sont vus doter d'un système immunitaire complexe mais très efficace, avec de multiples mécanismes de défense, principalement contre les infections. Ce système comprend différents types de cellules, dont les lymphocytes Τ qui sont capables de reconnaître et de tuer directement des cellules infectées. Les cellules Τ reconnaissent non seulement des cellules infectées par des virus, mais également des cellules autologues. Dans le cas de maladies auto-immunes, comme par exemple la sclérose en plaques, les cellules Τ s'attaquent à des cellules autologues, ce qui engendre la destruction des tissus sains. Il existe plusieurs systèmes de contrôle des réponses Τ afin de minimiser les réactions immunitaires aberrantes et d'empêcher les dégâts causés par une réponse immunitaire trop importante contre une cible étrangère.Dans le cas de maladies malignes en revanche, une réponse auto-immune peut être avantageuse. Il a été démontré que les lymphocytes Τ étaient également capables de reconnaître et de tuer des cellules tumorales, pouvant même mener à la guérison d'un patient cancéreux. La vaccination peut augmenter fortement la fréquence des cellules Τ réagissant contre une tumeur, particulièrement si elle est combinée avec des adjuvants puissants. Cependant, l'efficacité d'une réponse antitumorale est atténuée par ces mêmes mécanismes de contrôle qui protègent le corps humain des dégâts causés par des cellules Τ activées trop fortement pendant une infection.Dans le cadre de ma recherche de thèse, nous avons étudié les réponses Τ spontanées et induites par la vaccination dans des patients atteints du mélanome. Le but était d'identifier des conditions dans lesquelles les réponses des cellules Τ seraient atténuées, voire inhibées, et d'élucider les mécanismes de suppression immunitaire engendrés par le cancer. Par le biais de techniques nouvelles comprenant la cryométrie de flux et l'analyse globale de l'expression génique à partir d'un nombre minimal de cellules, il nous fut possible de caractériser des cellules Τ réactives contre des tumeurs directement ex vivo. Nous avons examiné les profiles d'expression de gènes et de protéines, ainsi que les capacités fonctionnelles des cellules Τ isolées à partir de tissus métastatiques et à partir du sang de patients. Nos résultats indiquent que les cellules Τ spécifiques aux antigènes tumoraux sont fonctionnelles dans le sang, mais qu'elles sont épuisées dans les tissus métastatiques. Nous avons découvert dans les cellules Τ antitumorales une augmentation de l'expression des récepteurs inhibiteurs probablement impliqués dans l'épuisement de ces lymphocytes T. Cette expression particulière de récepteurs inhibiteurs dépendrait donc de leur localisation anatomique et des mécanismes de suppression existant dans l'environnement immédiat de la tumeur. Nos données révèlent ainsi de nouvelles cibles potentielles pour l'immunothérapie du cancer et contribuent à la compréhension biologique du cancer.
Resumo:
The biodistribution of simultaneous intra-arterial and intravenous injections of a radiolabelled anti-CEA MAb F(ab')2 fragment was studied in three patients with liver metastases from colorectal cancer. Identical MAb fragments, labelled with either 125I or 131I, were injected over a period of 30 min into the hepatic artery and into a peripheral vein. After 1 or 2 days, biodistribution was measured in the surgically removed metastases, normal tissue samples and blood. By tissue radioactivity counting, tumour uptake in the range 6.3-9.1% of injected dose per gram was found. Superimposable metastasis-to-blood and metastasis-to-normal liver ratios were obtained for both iodine isotopes in all three patients. The results indicate that the intra-arterial injection of MAb F(ab')2 fragments gives no measurable advantage over more convenient injections into a peripheral vein.
Resumo:
The Wnt -Wingless (Wg) in Drosophila- signaling is an evolutionary conserved, fundamental signal transduction pathway in animals, having a crucial role in early developmental processes. In the adult animal the Wnt cascade is mainly shut off; aberrant activation leads to cancer. One physiological exception in the adult animal is the activation of Wnt signaling in the nervous system. In the present work, we investigated Wg signaling in the Drosophila neuromuscular junctions (NMJs). The fly NMJs closely resemble the glutamatergic synapses in the mammalian central nervous system and serves as a model system to investigate the mechanism of synapse formation and stability. We demonstrate that the trimeric G-protein Go has a fundamental role in the presynaptic cell in the NMJ. It is implicated in the presynaptic Wg pathway, acting downstream of the ligand Wg and its receptor Frizzled2 (Fz2). Furthermore, we prove that the presynaptic Wg-Fz2-Gαo pathway is essential for correct NMJ formation. The neuronal protein Ankyrin2 (Ank2) localizes to the NMJ and has so far been considered to be a static player in NMJ formation, linking the plasma membrane to the cytoskeleton. We identify Ank2 as a direct target of Gαo. The physical and genetic interaction of Gαo with Ank2 represents a novel branch of the presynaptic Wg pathway, regulating the microtubule cytoskeleton in NMJ formation, jointly with the previously established Futsch-dependent branch, which controls microtubule stability downstream of the kinase Sgg (the homolog of GSK3ß). We moreover demonstrate that the Gαo-Ankyrin interaction to regulate the cytoskeleton is conserved in mammalian neuronal cells. Our findings therefore provide a novel, universally valid regulation of the cytoskeleton in the nervous system. Aberrant inactivation of the neuronal Wnt pathway is believed to be involved in the pathogenesis of the Aß peptide in Alzheimer's disease (AD). We modeled AD in Drosophila by expressing Aß42 in the nervous system and in the eye. Neuronal expression drastically shortens the life span of the flies. We prove that this effect depends on the expression specifically in glutamatergic neurons. However, Aß42 does not induce any morphological changes in the NMJ; therefore this synapse is not suitable to study the mechanism of Aß42 induced neurotoxicity. We furthermore demonstrate that genetic activation of the Wnt pathway does not rescue the Aß42 induced phenotypes - in opposition to the dominating view in the field. These results advice caution when interpreting data on the potential interaction of Wnt signaling and AD in other models. -- La voie de signalisation Wnt (Wingless (Wg) chez la drosophile) est conservée dans l'évolution et fondamentale pour le développement des animaux. Cette signalisation est normalement inactive chez l'animal adulte; une activation anormale peut provoquer le cancer. Or, ceci n'est pas le cas dans le système nerveux des adultes. La présente thèse avait pour but d'analyser le rôle de la voie de signalisation Wingless dans la plaque motrice de Drosophila melanogaster. En effet, cette plaque ressemble fortement aux synapses glutaminergiques du système nerveux central des mammifères et procure ainsi un bon modèle pour l'étude des mécanismes impliqués dans la formation et la stabilisation des synapses. Nos résultats montrent que la protéine trimérique Go joue un rôle fondamental dans la fonction de la cellule présynaptique de la plaque motrice. Go est en effet impliqué dans la voie de signalisation Wg, opérant en aval du ligand Wg et de son récepteur Frizzled2. Nous avons pu démontrer que cette voie de signalisation Wg-Fz2-Gαo est essentielle pour le bon développement et le fonctionnement de la plaque motrice. Fait intéressant, nous avons montré que la protéine neuronale Ankyrin2 (Ank2), qui est connue pour jouer un rôle statique en liant la membrane plasmique au cytosquelette dans la plaque motrice, est une cible directe de Gαo. L'interaction physique et génétique entre Gαo et Ank2 constitue ainsi une bifurcation de la voie de signalisation présynaptique Wg. Cette voie régule le cytosquelette des microtubules en coopération avec la branche liée à la protéine Futsch. Cette protéine est l'homologue de la protéine liant les microtubules MAP1B des mammifères et contrôle la stabilité des microtubules opérant en aval de la kinase Sgg (l'homologue de GSK3ß). De plus, la régulation du cytosquelette par l'interaction entre Gαo et Ankyrin est conservée chez les mammifères. Dans leur ensemble, nos résultats ont permis d'identifier un nouveau mode de régulation du cytosquelette dans le système nerveux, probablement valable de manière universelle. La voie de signalisation Wnt est soupçonnée d'être impliquée dans la toxicité provoquée par le peptide Aß dans le cadre de la maladie d'Alzheimer. Nous avons tenté de modéliser la maladie chez la drosophile en exprimant Aß42 spécifiquement dans le cerveau. Cette expérience a montré que l'expression neuronale d'Aß42 réduit la durée de vie des mouches de manière significative par un mécanisme impliquant les cellules glutamatergiques. Par contre, aucune modification morphologique n'est provoquée par Aß42 dans les plaques motrices glutamatergiques. Ces résultats montrent que ce modèle de Drosophile n'est pas adéquat pour l'étude de la maladie d'Alzheimer. De plus, l'activation génétique de la voie de signalisation Wg n'a pas réussi à restaurer les phénotypes de survie ou ceux des yeux causés par Aß42. Ces résultats indiquent que l'implication de la voie de signalisation Wg dans la maladie d'Alzheimer doit être considérée avec prudence.
Resumo:
Rapid production of IL-4 by Leishmania homolog of mammalian RACK1 (LACK)-reactive CD4(+) T cells expressing the V beta 4-V alpha 8 TCR chains has been shown to drive aberrant Th2 cell development and susceptibility to Leishmania major in BALB/c mice. In contrast, mice from resistant strains fail to express this early IL-4 response. However, administration of either anti-IL-12 or -IFN-gamma at the initiation of infection allows the expression of this early IL-4 response in resistant mice. In this work we show that Leishmania homolog of mammalian RACK1-reactive CD4(+) T cells also expressing the V beta 4-V alpha 8 TCR chains are the source of the early IL-4 response to L. major in resistant mice given anti-IL-12 or -IFN-gamma Abs only at the onset of infection. Strikingly, these cells were found to be required for the reversal of the natural resistance of C57BL/6 mice following a single administration of anti-IL-12 or -IFN-gamma Abs. Together these results suggest that a deficiency in mechanisms capable of down-regulating the early IL-4 response to L. major contributes to the exquisite susceptibility of BALB/c mice to L. major.
Resumo:
Two cases of neonatal focal spontaneous colic perforations are reported. The 1st infant, born at 36 3/7 weeks gestational age, presented on day 3 with crying, abdominal distension, and liquid stools. Clinical examination showed a slightly irritable hypothermic (35.7 °C) infant with a distended abdomen and few bowel sounds. Blood tests were normal apart from an elevated C-reactive protein level (59 mg/l). The abdomen x-ray was erroneously considered normal. The infant's condition remained stable for nearly 3 days. After reviewing the initial x-ray, pneumoperitoneum was suspected and confirmed by a cross-table lateral abdominal x-ray. The infant was started on antibiotics and operated. Macroscopically, the entire gut was normal apart from a focal sigmoid perforation, which was stitched. A transmural colic biopsy revealed focal vascular dilation but was negative for necrotising enterocolitis or Hirschsprung disease. The infant recovered quickly. She is now a healthy, normal 3-year-old. The 2nd infant, born at 38 5/7 weeks gestational age, presented between day 1 and 2 with clinical signs of infection associated with slowly progressive ileus. The chest and abdomen x-ray was mistakenly considered normal. Frank septicemia developed. After reviewing the initial x-ray, pneumoperitoneum was suspected and confirmed by a cross-table lateral abdominal x-ray. The infant was operated. Macroscopically, the small intestine was normal, the ascending and transverse colons were dilated, and the descending and sigmoid colons were narrow. Three cecal perforations were discovered and stitched. An ileostomy and multiple colic biopsies were also performed. The postoperative course was complicated by persistent septic ileus due to descending and sigmoid colon leaks, which led to colic resections with end-to-end anastomosis. Rectal aspiration biopsies were also performed. At 1 month of age, the infant was discharged from the hospital. The ileostomy was closed in two steps at 2 and 5 months of age. A normal sweat test excluded cystic fibrosis. All colic and rectal biopsies revealed nonspecific inflammatory signs and excluded necrotizing enterocolitis and Hirschsprung disease. Nonspecific irregular thinning of muscularis mucosae and muscularis propria were observed in the two resected colic segments. The boy is now a healthy 7-year-old. The incidence of neonatal focal spontaneous colic perforations at term or close to term is unknown but probably very rare. Our department is the neonatal referral center for approximately 14,000 annual births. In the last 10 years (2000-2009), out of 5115 neonatal admissions in our unit, only ten cases have presented a neonatal spontaneous intestinal perforation, seven of ten in very-low-birth-weight infants and three of ten in term or near-term neonates (one with Hirschsprung disease and the two cases reported herein). In the same period, 108 infants suffered from necrotizing enterocolitis, seven of 108 were term infants and 6 out of 7 had a congenital heart disease. The medical literature is poor on the subject of focal spontaneous colic perforations at term; no risk factor is described. The most specific clinical sign seems to be the abdominal distension. The presence of pneumoperitoneum on an abdominal x-ray is the most sensitive paraclinical sign. In case of an intestinal perforation, surgery must be performed quickly. The vital prognosis seems to be good. The objective of this study was to draw pediatricians' attention to focal spontaneous colic perforations in term or close to term newborns. In the cases reported, the diagnostic delays could have been prevented if the entity - with its radiological manifestation - had been well known.
Resumo:
Dans les cellules épithéliales sensibles à l'aldostérone, le canal sodique épithélial (ENaC) joue un rôle critique dans le contrôle de l'équilibre sodique, le volume sanguin, et la pression sanguine. Le rôle d'ENaC est bien caractérisé dans le rein et les poumons, cependant le rôle d'ENaC et son régulateur positif la protéase activatrice de canal 1 (CAP1 /Prss8) sur le transport sodique dans le côlon reste en grande partie inconnu. Nous avons étudié l'importance d'ENaC et de CAPMPrss8 dans le côlon. Les souris déficientes pour la sous- unité aENaC (souris ScnnlaKO) dans les cellules superficielles intestinales étaient viables et ne montraient pas de létalité embryonnaire ou postnatale. Sous diète normale (RS) ou pauvre en sodium (LS), la différence de potentiel rectale sensible à l'amiloride (APDamii) était drastiquement diminuée et son rythme circadien atténué. Sous diète normale (RS) ou diète riche en sodium (HS) ou fort chargement de potassium, le sodium et le potassium plasmatique et urinaire n'étaient pas significativement changé. Cependant, sous LS, les souris Senni aK0 perdaient des quantités significativement augmentées de sodium dans leurs fèces, accompagnées par de très hauts taux d'aldostérone plasmatique et une rétention urinaire en sodium augmentée. Les souris déficientes en CAPl/PmS (Prss8K0) dans les cellules superficielles intestinales étaient viables et ne montraient pas de létalité embryonnaire ou postnatale. Sous diètes RS et HS cependant, les souris Prss8KO montraient une diminution significative du APDamil dans l'après-midi, mais le rythme circadien était maintenu. Sous diète LS, la perte de sodium par les fèces était accompagnée par des niveaux d'aldostérone plasmatiques plus élevés. Par conséquent, nous avons identifié la protéase activatrice de canal CAP 1 IPrss8 comme un régulateur important d'ENaC dans le côlon in vivo. De plus, nous étudions l'importance d'ENaC et de CAPIIPrss8 dans les conditions pathologiques comme les maladies inflammatoires chroniques de l'intestin (MICI). Le résultat préliminaire out montre qu'une déficience d'Prss8 mènait à la détérioration de la colite induite par le DSS comparé aux modèles contrôles respectifs. En résumé, l'étude a montré que sous restriction de sel, l'absence d'ENaC dans Pépithélium de surface du côlon était compensée par 1'activation du système rénine-angiotensine- aldostérone (RAAS) dans le rein. Ceci a mené à un pseudohypoaldostéronisme de type I spécifique au côlon avec résistance aux minéralocorticoïdes sans signe d'altération de rétention de potassium. - In aldosterone-responsive epithelial cells of kidney and colon, the epithelial sodium channel (ENaC) plays a critical role in the control of sodium balance, blood volume, and blood pressure. The role of ENaC is well characterized in kidney and lung, whereas role of ENaC and its positive regulator channel-activating protease 1 (CAPl/PrasS) on sodium transport in colon is largely unknown. We have investigated the importance of ENaC and CAPI/Prss8 in colon for sodium and potassium balance. Mice lacking the aENaC subunit (Scnnla mice) in intestinal superficial cells were viable and did not show any fetal or perinatal lethality. Under regular (RS) or low salt (LS) diet, the amiloride sensitive rectal potential difference (APDamii) was drastically decreased and its circadian rhythm blunted. Under regular salt (RS) or high salt (HS) diets or under potassium loading, plasma and urinary sodium and potassium were not significantly changed. However, upon LS, the ScnnlaK0 mice lost significant amounts of sodium in their feces, accompanied by very high plasma aldosterone and increased urinary sodium retention. Mice lacking the CAPl/PrasS (Prss8K0) in intestinal superficial cells were viable and did not show any fetal or perinatal lethality. Upon RS and HS diets, however, Prss8K0 exhibited a significantly reduced APDamii in the afternoon, but its circadian rhythm was maintained. Upon LS diet, sodium loss through feces was accompanied by higher plasma aldosterone levels. Thus, we have identified the channel-activating protease CAPl/Prss8 as an important in vivo regulator of ENaC in colon. Furthermore, we are investigating the importance of ENaC and CAPI/Prss8 in pathological conditions like inflammatory bowel disease (IBD). Preliminary data showed that PmS-deficiency led to worsening of DSS-induced colitis as compared to their respective controls. Overall, the present study has shown that under salt restriction, the absence of ENaC in colonic surface epithelium was compensated by the activation of renin-angiotensin- aldosterone (RAAS) system in the kidney. This led to a colon specific pseudohypoaldosteroni sm type 1 with mineralocorticoid resistance without evidence of impaired potassium retention.
Resumo:
BACKGROUND: The goal of this study was to characterize the performance of fluorine-19 ((19)F) cardiac magnetic resonance (CMR) for the specific detection of inflammatory cells in a mouse model of myocarditis. Intravenously administered perfluorocarbons are taken up by infiltrating inflammatory cells and can be detected by (19)F-CMR. (19)F-labeled cells should, therefore, generate an exclusive signal at the inflamed regions within the myocardium. METHODS AND RESULTS: Experimental autoimmune myocarditis was induced in BALB/c mice. After intravenous injection of 2×200 µL of a perfluorocarbon on day 19 and 20 (n=9) after immunization, in vivo (19)F-CMR was performed at the peak of myocardial inflammation (day 21). In 5 additional animals, perfluorocarbon combined with FITC (fluorescein isothiocyanate) was administered for postmortem immunofluorescence and flow-cytometry analyses. Control experiments were performed in 9 animals. In vivo (19)F-CMR detected myocardial inflammation in all experimental autoimmune myocarditis-positive animals. Its resolution was sufficient to identify even small inflammatory foci, that is, at the surface of the right ventricle. Postmortem immunohistochemistry and flow cytometry confirmed the presence of perfluorocarbon in macrophages, dendritic cells, and granulocytes, but not in lymphocytes. The myocardial volume of elevated (19)F signal (rs=0.96; P<0.001), the (19)F signal-to-noise ratio (rs=0.92; P<0.001), and the (19)F signal integral (rs=0.96; P<0.001) at day 21 correlated with the histological myocarditis severity score. CONCLUSIONS: In vivo (19)F-CMR was successfully used to visualize the inflammation specifically and robustly in experimental autoimmune myocarditis, and thus allowed for an unprecedented insight into the involvement of inflammatory cells in the disease process.
Resumo:
Glioblastomas are the most malignant gliomas with median survival times of only 15 months despite modern therapies. All standard treatments are palliative. Pathogenetic factors are diverse, hence, stratified treatment plans are warranted considering the molecular heterogeneity among these tumors. However, most patients are treated with "one fits all" standard therapies, many of them with minor response and major toxicities. The integration of clinical and molecular information, now becoming available using new tools such as gene arrays, proteomics, and molecular imaging, will take us to an era where more targeted and effective treatments may be implemented. A first step towards the design of such therapies is the identification of relevant molecular mechanisms driving the aggressive biological behavior of glioblastoma. The accumulation of diverse aberrations in regulatory processes enables tumor cells to bypass the effects of most classical therapies available. Molecular alterations underlying such mechanisms comprise aberrations on the genetic level, such as point mutations of distinct genes, or amplifications and deletions, while others result from epigenetic modifications such as aberrant methylation of CpG islands in the regulatory sequence of genes. Epigenetic silencing of the MGMT gene encoding a DNA repair enzyme was recently found to be of predictive value in a randomized clinical trial for newly diagnosed glioblastoma testing the addition of the alkylating agent temozolomide to standard radiotherapy. Determination of the methylation status of the MGMT promoter may become the first molecular diagnostic tool to identify patients most likely to respond that will allow individually tailored therapy in glioblastoma. To date, the test for the MGMT-methylation status is the only tool available that may direct the choice for alkylating agents in glioblastoma patients, but many others may hopefully become part of an arsenal to stratify patients to respective targeted therapies within the next years.
Resumo:
During the selection of monoclonal antibodies (MAb) raised against purified carcinoembryonic antigen (CEA), two MAbs were identified which immunoprecipitated a glycoprotein of 95 kD present both in perchloric acid extracts of normal lung and on the surface of normal granulocytes. This antigen was distinct from the previously reported normal glycoprotein crossreacting with CEA (NCA) which had a molecular weight of 55 kD. The difference between the smaller and the larger crossreacting antigens termed NCA-55 and NCA-95, respectively, was demonstrated by SDS-polyacrylamide gel electrophoresis, by elution from Sephadex-G200 and by selective binding to a series of anti-CEA MAb. Out of six MAb which all bound CEA purified from colon carcinoma, three did not react with these two crossreacting antigens, one bound only NCA-95, one reacted only with NCA-55 and one reacted with both NCA-55 and NCA-95. Immunoadsorbent purified preparations of 125I labelled NCA-95 and NCA-55 were found useful for the screening of new anti-CEA MAb. In addition, when tested on frozen sections of colon carcinoma, normal spleen, normal lung and pancreas, each type of MAb gave a clearly different pattern of reactivity. The three anti-CEA MAb which did not bind any of the crossreacting antigens stained only the colon carcinoma cells; the MAb binding to either one of the two types of NCA gave a similar pattern of reactivity both on colon carcinoma cells and on granulocytes. However, on normal lung and pancreas, the MAb binding NCA-55 stained granulocytes as well as bronchiolar and alveolar epithelial cells in lung and inter- and intra-lobular duct epithelial cells in pancreas, whereas the MAb binding only NCA-95 stained only the granulocytes. Thus, the newly identified NCA-95 appears to differ from NCA-55 not only in terms of molecular size and antigenicity but also by the fact that in normal lung and pancreas it is found in granulocytes but not in epithelial cells.
Resumo:
The CD44 adhesion receptor is silenced in highly malignant neuroblastomas (NBs) with MYCN amplification. Because its functional expression is associated with decreased tumorigenic properties, CD44 behaves as a tumor suppressor gene in NB and other cancers. Given that the precise mechanisms responsible for CD44 silencing are not elucidated, we investigated whether CD44 expression could be regulated by DNA hypermethylation. The methylation status of CD44 gene promoter and exon 1 regions was analyzed in 12 NB cell lines and 21 clinical samples after bisulfite genomic modification, followed by PCR and single-strand conformation polymorphism analysis and genomic sequencing. The results showed that almost all CD44-negative cell lines displayed hypermethylation in both regions, whereas all CD44-expressing cell lines were unmethylated. These observations correlated with the ability to restore CD44 mRNA and protein expression by treatment of CD44-negative cells with the 5-aza-2'-deoxycytidine demethylating agent. In contrast, no CD44 gene hypermethylation could be detected in 21 NB clinical samples of different stages, irrespective of CD44 expression. Although our results suggest that aberrant methylation of promoter and exon 1 regions is involved in CD44 silencing in NB cell lines, they also indicate that methylation of unidentified regulatory sequences or methylation-independent mechanisms also control the expression of CD44 in primary NB tumors and cell lines. We therefore conclude that CD44 silencing is controlled by complex and tumor cell-specific processes, including gene hypermethylation. Further investigation of other mechanisms and genes involved in CD44 regulation will be needed before demethylation-mediated reactivation of the CD44 gene can be considered as therapeutic strategy for neuroblastoma and perhaps other related cancers.
Resumo:
To improve the detectability of tumors by light-induced fluorescence, the use of monoclonal antibodies (MoAb) as carriers of fluorescent molecules was studied. As a model for this approach, the biodistribution of an anticarcinoembryonic antigen (CEA) MoAb coupled to fluorescein was studied in mice bearing a human colon carcinoma xenograft. In vitro, such conjugates with fluorescein-MoAb molar ratios ranging from four to 19, doubly labeled with 125I, showed more than 82% binding to immobilized CEA. In vivo, conjugates with a fluorescein-MoAb molar ratio of ten or less resulted in a tumor uptake of more than 30% of the injected dose of radioactivity per gram tumor at 24 hours. Tumor to liver, kidney, and muscle ratios of 20, 30 and 72, respectively, were obtained 48 hours after injection of the 125I-MoAb-(fluorescein)10 conjugate. The highest fluorescence intensity was always obtained for the tumor with the anti-CEA MoAb conjugate; whereas in control mice injected with fluoresceinated control immunoglobulin G1, no detectable increase in tumor fluorescence was observed. To compare these results with a classically used dye, mice bearing the same xenografts received 60 micrograms of Photofrin II. The intensity of the fluorescence signal of the tumor with this amount of Photofrin II was eight times lower than that obtained after an injection of 442 ng of fluorescein coupled with 20 micrograms of MoAb, which gave an absolute amount of fluorescein localized in the tumor of up to 125 ng/g of tumor. These results illustrate the possibility of improving the specificity of in vivo tumor localization of dyes for laser-induced fluorescence photodetection and phototherapy by coupling them to MoAb directed against tumor markers.