235 resultados para Carbapenem resistance
Resumo:
OBJECTIVES: The objective of this study was to characterize the underlying molecular mechanisms in consecutive clinical Candida albicans isolates from a single patient displaying stepwise-acquired multidrug resistance. METHODS: Nine clinical isolates (P-1 to P-9) were susceptibility tested by EUCAST EDef 7.2 and Etest. P-4, P-5, P-7, P-8 and P-9 were available for further studies. Relatedness was evaluated by MLST. Additional genes were analysed by sequencing (including FKS1, ERG11, ERG2 and TAC1) and gene expression by quantitative PCR (CDR1, CDR2 and ERG11). UV-spectrophotometry and GC-MS were used for sterol analyses. In vivo virulence was determined in the insect model Galleria mellonella and evaluated by log-rank Mantel-Cox tests. RESULTS: P-1 + P-2 were susceptible, P-3 + P-4 fluconazole resistant, P-5 pan-azole resistant, P-6 + P-7 pan-azole and echinocandin resistant and P-8 + P-9 MDR. MLST supported genetic relatedness among clinical isolates. P-4 harboured four changes in Erg11 (E266D, G307S, G450E and V488I), increased expression of ERG11 and CDR2 and a change in Tac1 (R688Q). P-5, P-7, P-8 and P-9 had an additional change in Erg11 (A61E), increased expression of CDR1, CDR2 and ERG11 (except for P-7) and a different amino acid change in Tac1 (R673L). Echinocandin-resistant isolates harboured the Fks1 S645P alteration. Polyene-resistant P-8 + P-9 lacked ergosterol and harboured a frameshift mutation in ERG2 (F105SfsX23). Virulence was attenuated (but equivalent) in the clinical isolates, but higher than in the azole- and echinocandin-resistant unrelated control strain. CONCLUSIONS: C. albicans demonstrates a diverse capacity to adapt to antifungal exposure. Potentially novel resistance-inducing mutations in TAC1, ERG11 and ERG2 require independent validation.
Resumo:
In many eusocial species, queens use pheromones to influence offspring to express worker phenotypes. Although evidence suggests that queen pheromones are honest signals of the queen's reproductive health, here I show that queen's honest signalling can result from ancestral maternal manipulation. I develop a mathematical model to study the coevolution of maternal manipulation, offspring resistance to manipulation and maternal resource allocation. I assume that (i) maternal manipulation causes offspring to be workers against offspring's interests; (ii) offspring can resist at no direct cost, as is thought to be the case with pheromonal manipulation; and (iii) the mother chooses how much resource to allocate to fertility and maternal care. In the coevolution of these traits, I find that maternal care decreases, thereby increasing the benefit that offspring obtain from help, which in the long run eliminates selection for resistance. Consequently, ancestral maternal manipulation yields stable eusociality despite costless resistance. Additionally, ancestral manipulation in the long run becomes honest signalling that induces offspring to help. These results indicate that both eusociality and its commonly associated queen honest signalling can be likely to originate from ancestral manipulation.
Resumo:
Metabolic syndrome (MetS) is a disease composed of different risk factors such as obesity, type 2 diabetes or dyslipidemia. The prevalence of this syndrome is increasing worldwide in parallel with the rise in obesity. Nonalcoholic fatty liver disease (NAFLD) is now the most frequent chronic liver disease in western countries, affecting more than 30% of the general population. NAFLD encompasses a spectrum of liver manifestations ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), fibrosis and cirrhosis, which may ultimately progress to hepatocellular carcinoma. There is accumulating evidence supporting an association between NAFLD and MetS. Indeed, NAFLD is recognized as the liver manifestation of MetS. Insulin resistance is increasingly recognized as a key factor linking MetS and NAFLD. Insulin resistance is associated with excessive fat accumulation in ectopic tissues, such as the liver, and increased circulating free fatty acids, which can further promote inflammation and endoplasmic reticulum stress. This in turn aggravates and maintains the insulin resistant state, constituting a vicious cycle. Importantly, evidence shows that most of the patients developing NAFLD present at least one of the MetS traits. This review will define MetS and NAFLD, provide an overview of the common pathophysiological mechanisms linking MetS and NAFLD, and give a perspective regarding treatment of these ever growing metabolic diseases.
Resumo:
AIMS: There is no standard test to determine the fatigue resistance of denture teeth. With the increasing number of patients with implant-retained dentures the mechanical strength of the denture teeth requires more attention and valid laboratory test set-ups. The purpose of the present study was to determine the fatigue resistance of various denture teeth using a dynamic load testing machine. METHODS: Four denture teeth were used: Bonartic II (Candulor), Physiodens (Vita), SR Phonares II (Ivoclar Vivadent) and Trubyte (Dentsply). For dynamic load testing, first upper molars with a similar shape and cusp inclination were selected. The molar teeth were embedded in cylindrical steel molds with denture base material (ProBase, Ivoclar Vivadent). Dynamic fatigue loading was carried out on the mesio-buccal cusp at a 45° angle using dynamic testing machines and 2,000,000 cycles at 2Hz in water (37°C). Three specimens per group and load were submitted to decreasing load levels (at least 4) until all the three specimens no longer showed any failures. All the specimens were evaluated under a stereo microscope (20× magnification). The number of cycles reached before observing a failure, and its dependence on the load and on the material, has been modeled using a parametric survival regression model with a lognormal distribution. This allowed to estimate the fatigue resistance for a given material as the maximal load for which one would observe less than 1% failure after 2,000,000 cycles. RESULTS: The failure pattern was similar for all denture teeth, showing a large chipping of the loaded mesio-buccal cusp. In our regression model, there were statistically significant differences among the different materials, with SR Phonares II and Bonartic II showing a higher resistance than Physiodens and Trubyte, the fatigue resistance being estimated at around 110N for the former two, and at about 60N for the latter two materials. CONCLUSION: The fatigue resistance may be a useful parameter to assess and to compare the clinical risk of chipping and fracture of denture tooth materials.
Resumo:
Mycoplasma mycoides subsp. capri (Mmc) and subsp. mycoides (Mmm) are important ruminant pathogens worldwide causing diseases such as pleuropneumonia, mastitis and septicaemia. They express galactofuranose residues on their surface, but their role in pathogenesis has not yet been determined. The M. mycoides genomes contain up to several copies of the glf gene, which encodes an enzyme catalysing the last step in the synthesis of galactofuranose. We generated a deletion of the glf gene in a strain of Mmc using genome transplantation and tandem repeat endonuclease coupled cleavage (TREC) with yeast as an intermediary host for the genome editing. As expected, the resulting YCp1.1-Δglf strain did not produce the galactofuranose-containing glycans as shown by immunoblots and immuno-electronmicroscopy employing a galactofuranose specific monoclonal antibody. The mutant lacking galactofuranose exhibited a decreased growth rate and a significantly enhanced adhesion to small ruminant cells. The mutant was also 'leaking' as revealed by a β-galactosidase-based assay employing a membrane impermeable substrate. These findings indicate that galactofuranose-containing polysaccharides conceal adhesins and are important for membrane integrity. Unexpectedly, the mutant strain showed increased serum resistance.
Resumo:
Criblamydia sequanensis is an amoeba-resisting bacterium recently isolated from the Seine River. This Chlamydia-related bacterium harbors a genome of approximately 3 Mbp and a megaplasmid of 89,525 bp. The plasmid encodes several efflux systems and an operon for arsenite resistance. This first genome sequence within the Criblamydiaceae family enlarges our view on the evolution and the ecology of this important bacterial clade largely understudied so far.