316 resultados para BONE TISSUES
Resumo:
BACKGROUND: Although methicillin-susceptible Staphylococcus aureus (MSSA) native bone and joint infection (BJI) constitutes the more frequent clinical entity of BJI, prognostic studies mostly focused on methicillin-resistant S. aureus prosthetic joint infection. We aimed to assess the determinants of native MSSA BJI outcomes. METHODS: Retrospective cohort study (2001-2011) of patients admitted in a reference hospital centre for native MSSA BJI. Treatment failure determinants were assessed using Kaplan-Meier curves and binary logistic regression. RESULTS: Sixty-six patients (42 males [63.6%]; median age 61.2 years; interquartile range [IQR] 45.9-71.9) presented an acute (n = 38; 57.6%) or chronic (n = 28; 42.4%) native MSSA arthritis (n = 15; 22.7%), osteomyelitis (n = 19; 28.8%) or spondylodiscitis (n = 32; 48.5%), considered as "difficult-to-treat" in 61 cases (92.4%). All received a prolonged (27.1 weeks; IQR, 16.9-36.1) combined antimicrobial therapy, after surgical management in 37 cases (56.1%). Sixteen treatment failures (24.2%) were observed during a median follow-up period of 63.3 weeks (IQR, 44.7-103.1), including 13 persisting infections, 1 relapse after treatment disruption, and 2 super-infections. Independent determinants of treatment failure were the existence of a sinus tract (odds ratio [OR], 5.300; 95% confidence interval [CI], 1.166-24.103) and a prolonged delay to infectious disease specialist referral (OR, 1.134; 95% CI 1.013-1.271). CONCLUSIONS: The important treatment failure rate pinpointed the difficulty of cure encountered in complicated native MSSA BJI. An early infectious disease specialist referral is essential, especially in debilitated patients or in presence of sinus tract.
Resumo:
PURPOSE OF REVIEW: The review aims at comprehensively discussing our current knowledge on bone metastases incidence in non-small cell lung cancer (NSCLC), their related complications as well as clinical impact in patients suffering from advanced disease. RECENT FINDINGS: After evoking the use of zoledronic acid as the established standard of care until recently, the new class of drugs available to prevent skeletal related events and targeting receptor activator of nuclear factor-kappa B (RANK) will be emphasized, reporting on denosumab clinical trials, a RANK-ligand (RANKL) targeting monoclonal antibody. Biological hypothesis regarding their mechanisms of action as well a potential direct impact on tumor cells are described according to the most recent laboratory as well as hypothesis-generating clinical data. SUMMARY: Targeting the RANK pathway is an efficient way to prevent complications of bone metastases in NSCLC. Interesting additional direct effects on tumor biology and evolution are being analyzed and prospectively assessed in clinical trials.
Resumo:
Supplementation of elderly institutionalized women with vitamin D and calcium decreased hip fractures and increased hip bone mineral density. Quantitative ultrasound (QUS) measurements can be performed in nursing homes, and easily repeated for follow-up. However, the effect of the correction of vitamin D deficiency on QUS parameters is not known. Therefore, 248 institutionalized women aged 62-98 years were included in a 2-year open controlled study. They were randomized into a treated group (n = 124), receiving 440 IU of vitamin D3 combined with 500 mg calcium (1250 mg calcium carbonate, Novartis) twice daily, and a control group (n = 124). One hundred and three women (42%), aged 84.5 +/- 7.5 years, completed the study: 50 in the treated group, 53 in the controls. QUS of the calcaneus, which measures BUA (broadband ultrasound attenuation) and SOS (speed of sound), and biochemical analysis were performed before and after 1 and 2 years of treatment. Only the results of the women with a complete follow-up were taken into account. Both groups had low initial mean serum 25-hydroxyvitamin D levels (11.9 +/- 1.2 and 11.7 +/- 1.2 micrograms/l; normal range 6.4-40.2 micrograms/l) and normal mean serum parathyroid hormone (PTH) levels (43.1 +/- 3.2 and 44.6 +/- 3.5 ng/l; normal range 10-70 ng/l, normal mean 31.8 +/- 2.3 ng/l). The treatment led to a correction of the metabolic disturbances, with an increase in 25-hydroxyvitamin D by 123% (p < 0.01) and a decrease in PTH by 18% (p < 0.05) and of alkaline phosphatase by 15% (p < 0.01). In the controls there was a worsening of the hypovitaminosis D, with a decrease of 25-hydroxyvitamin D by 51% (p < 0.01) and an increase in PTH by 51% (p < 0.01), while the serum calcium level decreased by only 2% (p < 0.01). After 2 years of treatment BUA increased significantly by 1.6% in the treated group (p < 0.05), and decreased by 2.3% in the controls (p < 0.01). Therefore, the difference in BUA between the treated subjects and the controls (3.9%) was significant after 2 years (p < 0.01). However, SOS decreased by the same amount in both groups (approximately 0.5%). In conclusion, BUA, but not SOS, reflected the positive effect on bone of supplementation with calcium and vitamin D3 in a population of elderly institutionalized women.
Resumo:
BACKGROUND: Zinc (Zn) is an essential trace element and it is abundant in connective tissues, however biological roles of Zn and its transporters in those tissues and cells remain unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we report that mice deficient in Zn transporter Slc39a13/Zip13 show changes in bone, teeth and connective tissue reminiscent of the clinical spectrum of human Ehlers-Danlos syndrome (EDS). The Slc39a13 knockout (Slc39a13-KO) mice show defects in the maturation of osteoblasts, chondrocytes, odontoblasts, and fibroblasts. In the corresponding tissues and cells, impairment in bone morphogenic protein (BMP) and TGF-beta signaling were observed. Homozygosity for a SLC39A13 loss of function mutation was detected in sibs affected by a unique variant of EDS that recapitulates the phenotype observed in Slc39a13-KO mice. CONCLUSIONS/SIGNIFICANCE: Hence, our results reveal a crucial role of SLC39A13/ZIP13 in connective tissue development at least in part due to its involvement in the BMP/TGF-beta signaling pathways. The Slc39a13-KO mouse represents a novel animal model linking zinc metabolism, BMP/TGF-beta signaling and connective tissue dysfunction.
Resumo:
INTRODUCTION: The trabecular bone score (TBS) is a new parameter that is determined from grey level analysis of DXA images. It relies on the mean thickness and volume fraction of trabecular bone microarchitecture. This was a preliminary case-control study to evaluate the potential diagnostic value of TBS, both alone and combined with bone mineral density (BMDa), in the assessment of vertebral fracture. METHODS: Out of a subject pool of 441 Caucasian, postmenopausal women between the ages of 50 and 80 years, we identified 42 women with osteoporosis-related vertebral fractures, and compared them with 126 age-matched women without any fractures (1 case: 3 controls). Primary outcomes were BMDa and TBS. Inter-group comparisons were undertaken using Student's t-tests and Wilcoxon signed ranks tests for parametric and non-parametric data, respectively. Odds ratios for vertebral fracture were calculated for each incremental one standard deviation decrease in BMDa and TBS, and areas under the receiver operating curve (AUC) calculated and sensitivity analysis were conducted to compare BMDa alone, TBS alone, and the combination of BMDa and TBS. Subgroup analyses were performed specifically for women with osteopenia, and for women with T-score-defined osteoporosis. RESULTS: Across all subjects (n=42, 126) weight and body mass index were greater and BMDa and TBS both less in women with fractures. The odds of vertebral fracture were 3.20 (95% CI, 2.01-5.08) for each incremental decrease in TBS, 1.95 (1.34-2.84) for BMDa, and 3.62 (2.32-5.65) for BMDa + TBS combined. The AUC was greater for TBS than for BMDa (0.746 vs. 0.662, p=0.011). At iso-specificity (61.9%) or iso-sensitivity (61.9%) for both BMDa and TBS, TBS + BMDa sensitivity or specificity was 19.1% or 16.7% greater than for either BMDa or TBS alone. Among subjects with osteoporosis (n=11, 40) both BMDa (p=0.0008) and TBS (p=0.0001) were lower in subjects with fractures, and both OR and AUC (p=0.013) for BMDa + TBS were greater than for BMDa alone (OR=4.04 [2.35-6.92] vs. 2.43 [1.49-3.95]; AUC=0.835 [0.755-0.897] vs. 0.718 [0.627-0.797], p=0.013). Among subjects with osteopenia, TBS was lower in women with fractures (p=0.0296), but BMDa was not (p=0.75). Similarly, the OR for TBS was statistically greater than 1.00 (2.82, 1.27-6.26), but not for BMDa (1.12, 0.56-2.22), as was the AUC (p=0.035), but there was no statistical difference in specificity (p=0.357) or sensitivity (p=0.678). CONCLUSIONS: The trabecular bone score warrants further study as to whether it has any clinical application in osteoporosis detection and the evaluation of fracture risk.
Resumo:
The cell surface receptor Fas (FasR, Apo-1, CD95) and its ligand (FasL) are mediators of apoptosis that have been shown to be implicated in the peripheral deletion of autoimmune cells, activation-induced T cell death, and one of the two major cytolytic pathways mediated by CD8+ cytolytic T cells. To gain further understanding of the Fas system., we have analyzed Fas and FasL expression during mouse development and in adult tissues. In developing mouse embryos, from 16.5 d onwards, Fas mRNA is detectable in distinct cell types of the developing sinus, thymus, lung, and liver, whereas FasL expression is restricted to submaxillary gland epithelial cells and the developing nervous system. Significant Fas and FasL expression were observed in several nonlymphoid cell types during embryogenesis, and generally Fas and FasL expression were not localized to characteristic sites of programmed cell death. In the adult mouse, RNase protection analysis revealed very wide expression of both Fas and FasL. Several tissues, including the thymus, lung, spleen, small intestine, large intestine, seminal vesicle, prostate, and uterus, clearly coexpress the two genes. Most tissues constitutively coexpressing Fas and FasL in the adult mouse are characterized by apoptotic cell turnover, and many of those expressing FasL are known to be immune privileged. It may be, therefore, that the Fas system is implicated in both the regulation of physiological cell turnover and the protection of particular tissues against potential lymphocyte-mediated damage.
Resumo:
Background and objectives: Interleukin-18 (IL-18) is a pleiotropic cytokine involved in rheumatoid arthritis (RA) pathogenesis. This studywas carried out to evaluate the efficicacy of interleukin-18 binding protein (IL-18BP) gene therapy in the rat adjuvant-induced arthritis (AIA) model and to decipher the mechanisms by which IL-18BP delivery lessens bone destruction. Materials and methods: Arthritis was induced in female Lewis rat by Mycobacterium butyricum and the mRNA expression of IL-18 and IL-18BP was determined in the joints. In a preventative study, rats were divided into an adenovirus producing IL-18BP-Fc (AdmIL-18BP-Fc) group (n=8) and an adenovirus producing green fluorescent protein (AdGFP) group (n=7). On day 8 after AIA induction, adenoviruses were injected. Clinical parameters were assessed. At day 18, during maximal arthritis, the rats were euthanized, ankles were collected, and X-rays were performed. mRNA and protein were extracted from joints for analyses by qRT-PCR, multiplex, Western blot, and zymography. Results: We observed a decrease in the [IL-18BP/IL-18] ratio from day 7 to day 45. Administration of AdmIL-18BPd-Fc decreased clinical parameters and prevented bone and joint destruction compared to AdGFP administration. IL-18BP delivery reduced the metalloproteinase 9 (MMP-9) levels by 33% (at protein level (Fig. 1B) and functional level (Fig. 1C) and the tartrate-resistant acid phosphatase (TRAP) level by 44% (Fig. 1D) in the joint homogenates from AdmIL-18BPd-Fc compared to AdGFP treated rats.However, no variationwas observed forMMP-2 at the protein level (Fig.1A) and functional level (Fig. 1C). Conclusions: In rat AIA, a decrease in the [IL-18BP/ IL-18] ratio was observed. IL-18BP delivery prevented joint and bone destruction by downregulating MMP-9 and TRAP, suggesting a potential benefit of a similar therapy in RA.
Resumo:
Objective: Bone cements and substitutes are commonly used in surgery to deliver antibiotics locally. The objective of this study was to assess the systemic absorption and disposition of vancomycin in patients treated with active calcium sulfate bone filler and to predict systemic concentrations under various conditions. Method: 277 blood samples were taken from 42 patients receiving vancomycin in bone cement during surgery. Blood samples were collected from 3h to 10 days after implantation. Vancomycin was measured by immunoenzymatic assay. Population pharmacokinetic (PK) analysis was performed using NONMEM to assess average estimates and variability of PK parameters. Based on the final model, simulations with various doses and renal function levels were performed. Results: The patients were 64 ± 20 years old, their body weight was 81 ± 22 kg and Cockcroft-Gault creatinine clearance (CLcr) 98 ± 55 mL/min. Vancomycin doses ranged from 200 mg to 6000 mg and implantation sites were hip (n=16), tibia (10) or others (16). Concentration profiles remained low and consistent with absorption rate-limited first-order release, while showing prominent variability. Mean clearance (CL) was 3.87 L/h (CV 35%), absorption rate constant (ka) 0.004 h-1 (66%) and volume of distribution (V) 9.5 L. Simulations with up to 8000 mg vancomycin implant showed systemic concentrations exceeding 20 mg/L for 3.5 days in 43% of the patients with CLcr 15 mL/min, whereas 7% of the patients with normal renal function had a concentration above 20 mg/L for 1.1 days. Subtherapeutic concentrations (0.4-4 mg/L) were predicted during a median of 22 days in patients with normal renal function and 4000 mg vancomycin implant, with limited influence of dose or renal function. Conclusion: Vancomycin-laden calcium sulfate implant does not raise toxicity concern. Selection of resistant bacteria, such as Enterococcus and Staphylococcus species, might however be a concern, as simulations show persistent subtherapeutic systemic concentrations during 3 to 4 weeks in these patients.
Resumo:
PURPOSE: Abdominal aortic aneurysms (AAAs) expand because of aortic wall destruction. Enrichment in Vascular Smooth Muscle Cells (VSMCs) stabilizes expanding AAAs in rats. Mesenchymal Stem Cells (MSCs) can differentiate into VSMCs. We have tested the hypothesis that bone marrow-derived MSCs (BM-MSCs) stabilizes AAAs in a rat model. MATERIAL AND METHODS: Rat Fischer 344 BM-MSCs were isolated by plastic adhesion and seeded endovascularly in experimental AAAs using xenograft obtained from guinea pig. Culture medium without cells was used as control group. The main criteria was the variation of the aortic diameter at one week and four weeks. We evaluated the impact of cells seeding on inflammatory response by immunohistochemistry combined with RT-PCR on MMP9 and TIMP1 at one week. We evaluated the healing process by immunohistochemistry at 4 weeks. RESULTS: The endovascular seeding of BM-MSCs decreased AAA diameter expansion more powerfully than VSMCs or culture medium infusion (6.5% ± 9.7, 25.5% ± 17.2 and 53.4% ± 14.4; p = .007, respectively). This result was sustained at 4 weeks. BM-MSCs decreased expression of MMP-9 and infiltration by macrophages (4.7 ± 2.3 vs. 14.6 ± 6.4 mm(2) respectively; p = .015), increased Tissue Inhibitor Metallo Proteinase-1 (TIMP-1), compared to culture medium infusion. BM-MSCs induced formation of a neo-aortic tissue rich in SM-alpha active positive cells (22.2 ± 2.7 vs. 115.6 ± 30.4 cells/surface units, p = .007) surrounded by a dense collagen and elastin network covered by luminal endothelial cells. CONCLUSIONS: We have shown in this rat model of AAA that BM-MSCs exert a specialized function in arterial regeneration that transcends that of mature mesenchymal cells. Our observation identifies a population of cells easy to isolate and to expand for therapeutic interventions based on catheter-driven cell therapy.
Resumo:
PURPOSE OF REVIEW: The article reviews recent significant advances and current applications of the temporoparietal fascia flap (TPFF) in head and neck surgery. RECENT FINDINGS: The recent literature describes a wide span of new applications of the TPFF in many areas. Significant developments and refinements in the reconstruction of orbitomaxillary composite defects and orbital exenteration cavities are reported. The TPFF combined with alloplastic framework is gaining in importance in external ear reconstruction. Innovative prefabricated skin or soft-tissue grafts based on the TPFF are used to restore facial contour or in the reconstruction of complex facial defects. The free TPFF finds a role in laryngotracheal reconstruction as a vascular carrier to support cartilage grafts. SUMMARY: Owing to its reliability and unequalled structural properties, the TPFF still plays a central role in facial reconstruction. Future investigation will likely incorporate the free TPFF as a vascular carrier of bioengineered tissues, such as cartilage and mucosa, for various head and neck indications.
Resumo:
Bone morphogenetic protein (BMP)-2 and transforming growth factor (TGF)-beta1 are multifunctional cytokines both proposed as stimulants for cartilage repair. Thus it is crucial to closely examine and compare their effects on the expression of key markers of the chondrocyte phenotype, at the gene and protein level. In this study, the expression of alpha 10 and alpha 11 integrin subunits and the IIA/IIB spliced forms of type II procollagen have been monitored for the first time in parallel in the same in vitro model of mouse chondrocyte dedifferentiation/redifferentiation. We demonstrated that TGF-beta1 stimulates the expression of the non-chondrogenic form of type II procollagen, IIA isoform, and of a marker of mesenchymal tissues, i.e. the alpha 11 integrin subunit. On the contrary, BMP-2 stimulates the cartilage-specific form of type II procollagen, IIB isoform, and a specific marker of chondrocytes, i.e. the alpha 10 integrin subunit. Collectively, our results demonstrate that BMP-2 has a better capability than TGF-beta1 to stimulate chondrocyte redifferentiation and reveal that the relative expressions of type IIB to type IIA procollagens and alpha 10 to alpha 11 integrin subunits are good markers to define the differentiation state of chondrocytes. In addition, adenoviral expression of Smad6, an inhibitor of BMP canonical Smad signaling, did not affect expression of total type II procollagen or the ratio of type IIA and type IIB isoforms in mouse chondrocytes exposed to BMP-2. This result strongly suggests that signaling pathways other than Smad proteins are involved in the effect of BMP-2 on type II procollagen expression.
Resumo:
Use of radiolabeled nucleotides for tumor imaging is hampered by rapid in vivo degradation and low DNA-incorporation rates. We evaluated whether blocking of thymidine (dThd) synthesis by 5-fluoro-2'-deoxyuridine (FdUrd) could improve scintigraphy with radio-dThd analogues, such as 5-iodo-2'-deoxyuridine (IdUrd). We first show in vitro that coincubation with FdUrd substantially increased incorporation of [125I]IdUrd and [3H]dThd in the three tested human glioblastoma lines. Flow cytometry analysis showed that a short coincubation with FdUrd (1 h) produces a signal increase per labeled cell. We then measured biodistribution 24 h after i.v. injection of [125I]IdUrd in nude mice s.c. xenografted with the three glioblastoma lines. Compared with animals given [125I]IdUrd alone, i.v. preadministration for 1 h of 10 mg/kg FdUrd increased the uptake of [125I]IdUrd in the three tumors 4.8-6.8-fold. Compatible with previous reports, there were no side effects in mice observed for 2 months after receiving such a treatment. The tumor uptake of [125I]IdUrd was increased < or =13.6-fold when FdUrd preadministration was stepwise reduced to 1.1 mg/kg. Uptake increases remained lower (between 1.7- and 5.8-fold) in normal proliferating tissues (i.e., bone marrow, spleen, and intestine) and negligible in quiescent tissues. DNA extraction showed that 72-80% of radioactivity in tumor and intestine was bound to DNA. Scintigraphy of xenografted mice was performed at different times after i.v. injection of 3.7 MBq [125I]IdUrd. Tumor detection was significantly improved after FdUrd preadministration while still equivocal after 24 h in mice given [125I]IdUrd alone. Furthermore, background activity could be greatly reduced by p.o. administration of KClO4 in addition to potassium iodide. We conclude that FdUrd preadministration may improve positron or single photon emission tomography with cell division tracers, such as radio-IdUrd and possibly other dThd analogues.
Resumo:
Remorins form a superfamily of plant-specific plasma membrane/lipid-raft-associated proteins of unknown structure and function. Using specific antibodies, we localized tomato remorin 1 to apical tissues, leaf primordia and vascular traces. The deduced remorin protein sequence contains a predicted coiled coil-domain, suggesting its participation in protein-protein interactions. Circular dichroism revealed that recombinant potato remorin contains an alpha-helical region that forms a functional coiled-coil domain. Electron microscopy of purified preparations of four different recombinant remorins, one from potato, two divergent isologs from tomato, and one from Arabidopsis thaliana , demonstrated that the proteins form highly similar filamentous structures. The diameters of the negatively-stained filaments ranged from 4.6-7.4 nm for potato remorin 1, 4.3-6.2 nm for tomato remorin 1, 5.7-7.5 nm for tomato remorin 2, and 5.7-8.0 nm for Arabidopsis Dbp. Highly polymerized remorin 1 was detected in glutaraldehyde-crosslinked tomato plasma membrane preparations and a population of the protein was immunolocalized in tomato root tips to structures associated with discrete regions of the plasma membrane.
Resumo:
Antiresorptive agents such as bisphosphonates induce a rapid increase of BMD during the 1st year of treatment and a partial maintenance of bone architecture. Trabecular Bone Score (TBS), a new grey-level texture measurement that can be extracted from the DXA image, correlates with 3D parameters of bone micro-architecture. Aim: To evaluate the longitudinal effect of antiresorptive agents on spine BMD and on site-matched spine microarchitecture as assessed by TBS. Methods: From the BMD database for Province of Manitoba, Canada, we selected women age >50 with paired baseline and follow up spine DXA examinations who had not received any prior HRT or other antiresorptive drug.Women were divided in two subgroups: (1) those not receiving any HRT or antiresorptive drug during follow up (=non-users) and (2) those receiving non-HRT antiresorptive drug during follow up (=users) with high adherence (medication possession ratio >75%) from a provincial pharmacy database system. Lumbar spine TBS was derived by the Bone Disease Unit, University of Lausanne, for each spine DXA examination using anonymized files (blinded from clinical parameters and outcomes). Effects of antiresorptive treatment for users and non-users on TBS and BMD at baseline and during mean 3.7 years follow-up were compared. Results were expressed % change per year. Results: 1150 non-users and 534 users met the inclusion criteria. At baseline, users and non-users had a mean age and BMI of [62.2±7.9 vs 66.1±8.0 years] and [26.3±4.7 vs 24.7±4.0 kg/m²] respectively. Antiresorptive drugs received by users were bisphosphonates (86%), raloxifene (10%) and calcitonin (4%). Significant differences in BMD change and TBS change were seen between users and nonusers during follow-up (p<0.0001). Significant decreases in mean BMD and TBS (−0.36± 0.05% per year; −0.31±0.06% per year) were seen for non-users compared with baseline (p<0.001). A significant increase in mean BMD was seen for users compared with baseline (+1.86±0.0% per year, p<0.0018). TBS of users also increased compared with baseline (+0.20±0.08% per year, p<0.001), but more slowly than BMD. Conclusion: We observed a significant increase in spine BMD and a positive maintenance of bone micro-architecture from TBS with antiresorptive treatment, whereas the treatment naïve group lost both density and micro-architecture. TBS seems to be responsive to treatment and could be suitable for monitoring micro-architecture. This article is part of a Special Issue entitled ECTS 2011. Disclosure of interest: M.-A. Krieg: None declared, A. Goertzen: None declared, W. Leslie: None declared, D. Hans Consulting fees from Medimaps.