400 resultados para Aging Mouse
Resumo:
The primary sensory neurons in mouse dorsal root ganglia consist of diversified subpopulations which express distinct phenotypic characteristics such as substance P or calbindin D-28k. To determine whether neuronal phenotypes are altered or not in in vitro cultures carried out in a defined synthetic medium, dissociated dorsal root ganglion cells from newborn mice were grown in the alpha-modified minimum essential medium either supplemented with 10% fetal calf serum or serum-free. About 80% of the neurons survived after 5 days of culture in both media, but only 35% or 65% were rescued after 12 days in serum-free or fetal calf serum supplemented medium, respectively. The neuronal subpopulations expressing substance P or calbindin D-28k displayed similar morphological properties in both media and a higher resistance to culture conditions than the whole neuronal cell population, especially in serum-free medium. It is therefore concluded that a defined synthetic medium offers reproducible conditions to culture dorsal root ganglion cells for at least 5 days, stimulates the expression of substance P and enriches preferentially neuronal phenotypes expressing substance P or calbindin D-28k, for a longer period of culture.
Resumo:
Many mucosal pathogens invade the host by initially infecting the organized mucosa-associated lymphoid tissue (o-MALT) such as Peyer's patches or nasal cavity-associated lymphoid tissue (NALT) before spreading systemically. There is no clear demonstration that serum antibodies can prevent infections in o-MALT. We have tested this possibility by using the mouse mammary tumor virus (MMTV) as a model system. In peripheral lymph nodes or in Peyer's patches or NALT, MMTV initially infects B lymphocytes, which as a consequence express a superantigen (SAg) activity. The SAg molecule induces the local activation of a subset of T cells within 6 days after MMTV infection. We report that similar levels of anti-SAg antibody (immunoglobulin G) in serum were potent inhibitors of the SAg-induced T-cell response both in peripheral lymph nodes and in Peyer's patches or NALT. This result clearly demonstrates that systemic antibodies can gain access to Peyer's patches or NALT.
Resumo:
The monocarboxylate transporter MCT4 is a high capacity carrier important for lactate release from highly glycolytic cells. In the central nervous system, MCT4 is predominantly expressed by astrocytes. Surprisingly, MCT4 expression in cultured astrocytes is low, suggesting that a physiological characteristic, not met in culture conditions, is necessary. Here we demonstrate that reducing oxygen concentration from 21% to either 1 or 0% restored in a concentration-dependent manner the expression of MCT4 at the mRNA and protein levels in cultured astrocytes. This effect was specific for MCT4 since the expression of MCT1, the other astrocytic monocarboxylate transporter present in vitro, was not altered in such conditions. MCT4 expression was shown to be controlled by the transcription factor hypoxia-inducible factor-1α (HIF-1α) since under low oxygen levels, transfecting astrocyte cultures with a siRNA targeting HIF-1α largely prevented MCT4 induction. Moreover, the prolyl hydroxylase inhibitor dimethyloxalylglycine (DMOG) induced MCT4 expression in astrocytes cultured in presence of 21% oxygen. In parallel, glycolytic activity was enhanced by exposure to 1% oxygen as demonstrated by the increased lactate release, an effect dependent on MCT4 expression. Finally, MCT4 expression was found to be necessary for astrocyte survival when exposed for a prolonged period to 1% oxygen. These data suggest that a major determinant of astrocyte MCT4 expression in vivo is likely the oxygen tension. This could be relevant in areas of high neuronal activity and oxygen consumption, favouring astrocytic lactate supply to neurons. Moreover, it could also play an important role for neuronal recovery after an ischemic episode.
Resumo:
ABSTRACTIn normal tissues, a balance between pro- and anti-angiogenic factors tightly controls angiogenesis. Alterations of this balance may have pathological consequences. For instance, concerning the retina, the vascular endothelial growth factor (VEGF) is a potent pro-angiogenic factor, and has been identified has a key player during ocular neovascularization implicated in a variety of retinal diseases. In the exudative form (wet-form) of age-related macular degeneration (AMD), neovascularizations occurring from the choroidal vessels are responsible for a quick and dramatic loss of visual acuity. In diabetic retinopathy and retinopathy of prematurity, sprouting from the retinal vessels leads to vision loss. Furthermore, the aging of the population, the increased- prevalence of diabetes and the better survival rate of premature infants will lead to an increasing rate of these conditions. In this way, anti-VEGF strategy represents an important therapeutic target to treat ocular neovascular disorders.In addition, the administration of Pigmented Epithelial growth factor, a neurotrophic and an anti- angiogenic factor, prevents photoreceptor cell death in a model of retinal degeneration induced by light. Previous results analyzing end point morphology reveal that the light damage (LD) model is used to mimic retinal degenerations arising from environmental insult, as well as aging and genetic disease such as advanced atrophic AMD. Moreover, light has been identified as a co-factor in a number of retinal diseases, speeding up the degeneration process. This protecting effect of PEDF in the LD retina raises the possibility of involvement of the balance between pro- and anti-angiogenic factors not only for angiogenesis, but also in cell survival and maintenance.The aim of the work presented here was to evaluate the importance of this balance in neurodegenerative processes. To this aim, a model of light-induced retinal degeneration was used and characterized, mainly focusing on factors simultaneously controlling neuron survival and angiogenesis, such as PEDF and VEGF.In most species, prolonged intense light exposure can lead to photoreceptor cell damage that can progress to cell death and vision loss. A protocol previously described to induce retinal degeneration in Balb/c mice was used. Retinas were characterized at different time points after light injury through several methods at the functional and molecular levels. Data obtained confirmed that toxic level of light induce PR cell death. Variations were observed in VEGF pathway players in both the neural retina and the eye-cup containing the retinal pigment epithelium (RPE), suggesting a flux of VEGF from the RPE towards the neuroretina. Concomitantly, the integrity of the outer blood-retinal-barrier (BRB) was altered, leading to extravascular albumin leakage from the choroid throughout the photoreceptor layer.To evaluate the importance of VEGF during light-induced retinal degeneration process, a lentiviral vector encoding the cDNA of a single chain antibody directed against all VEGF-A isoforms was developed (LV-V65). The bioactivity of this vector to block VEGF was validated in a mouse model of laser-induced choroidal neovascularization mediated by VEGF upregulation. The vector was then used in the LD model. The administration of the LV-V65 contributed to the maintenance of functional photoreceptors, which was assessed by ERG recording, visual acuity measurement and histological analyses. At the RPE level, the BRB integrity was preserved as shown by the absence of albumin leakage and the maintenance of RPE cell cohesion.These results taken together indicate that the VEGF is a mediator of light induced PR degeneration process and confirm the crucial role of the balance between pro- and anti-angiogenic factors in the PR cell survival. This work also highlights the prime importance of BRB integrity and functional coupling between RPE and PR cells to maintain the PR survival. VEGF dysregulation was already shown to be involved in wet AMD forms and our study suggests that VEGF dysregulation may also occur at early stages of AMD and could thus be a potential therapeutic target for several RPE related diseases.RESUMEDans les différents tissues de l'organisme, l'angiogenèse est strictement contrôlée par une balance entre les facteurs pro- et anti-angiogéniques. Des modifications survenant dans cette balance peuvent engendrer des conséquences pathologiques. Par exemple, concernant la rétine, le facteur de croissance de l'endothélium vasculaire (VEGF) est un facteur pro-angiogénique important. Ce facteur a été identifié comme un acteur majeur dans les néovascularisations oculaires et les processus pathologiques angiogéniques survenant dans l'oeil et responsables d'une grande variété de maladies rétiniennes. Dans la forme humide de la dégénérescence maculaire liée à l'âge (DMLA), la néovascularisation choroïdienne est responsable de la perte rapide et brutale de l'acuité visuelle chez les patients affectés. Dans la rétinopathie diabétique et celle lié à la prématurité, l'émergence de néovaisseaux rétiniens est la cause de la perte de la vision. Les néovascularisations oculaires représentent la principale cause de cécité dans les pays développés. De plus, l'âge croissant de la population, la progression de la prévalence du diabète et la meilleure survie des enfants prématurés mèneront sans doute à l'augmentation de ces pathologies dans les années futures. Dans ces conditions, les thérapies anti- angiogéniques visant à inhiber le VEGF représentent une importante cible thérapeutique pour le traitement de ces pathologies.Plusieurs facteurs anti-angiogéniques ont été identifiés. Parmi eux, le facteur de l'épithélium pigmentaire (PEDF) est à la fois un facteur neuro-trophique et anti-angiogénique, et l'administration de ce facteur au niveau de la rétine dans un modèle de dégénérescence rétinienne induite par la lumière protège les photorécepteurs de la mort cellulaire. Des études antérieures basées sur l'analyse morphologique ont révélé que les modifications survenant lors de la dégénération induite suite à l'exposition à des doses toxiques de lumière représente un remarquable modèle pour l'étude des dégénérations rétiniennes suite à des lésions environnementales, à l'âge ou encore aux maladies génétiques telle que la forme atrophique avancée de la DMLA. De plus, la lumière a été identifiée comme un co-facteur impliqué dans un grand nombre de maladies rétiniennes, accélérant le processus de dégénération. L'effet protecteur du PEDF dans les rétines lésées suite à l'exposition de des doses toxiques de lumière suscite la possibilité que la balance entre les facteurs pro- et anti-angiogéniques soit impliquée non seulement dans les processus angiogéniques, mais également dans le maintient et la survie des cellules.Le but de ce projet consiste donc à évaluer l'implication de cette balance lors des processus neurodégénératifs. Pour cela, un modèle de dégénération induite par la lumière à été utilisé et caractérisé, avec un intérêt particulier pour les facteurs comme le PEDF et le VEGF contrôlant simultanément la survie des neurones et l'angiogenèse.Dans la plupart des espèces, l'exposition prolongée à une lumière intense peut provoquer des dommages au niveau des cellules photoréceptrices de l'oeil, qui peut mener à leur mort, et par conséquent à la perte de la vision. Un protocole préalablement décrit a été utilisé pour induire la dégénération rétinienne dans les souris albinos Balb/c. Les rétines ont été analysées à différents moments après la lésion par différentes techniques, aussi bien au niveau moléculaire que fonctionnel. Les résultats obtenus ont confirmé que des doses toxiques de lumière induisent la mort des photorécepteurs, mais altèrent également la voie de signalisation du VEGF, aussi bien dans la neuro-rétine que dans le reste de l'oeil, contenant l'épithélium pigmentaire (EP), et suggérant un flux de VEGF provenant de ΙΈΡ en direction de la neuro-rétine. Simultanément, il se produit une altération de l'intégrité de la barrière hémato-rétinienne externe, menant à la fuite de protéine telle que l'albumine, provenant de la choroïde et retrouvée dans les compartiments extravasculaires de la rétine, telle que dans la couche des photorécepteurs.Pour déterminer l'importance et le rôle du VEGF, un vecteur lentiviral codant pour un anticorps neutralisant dirigée contre tous les isoformes du VEGF a été développé (LV-V65). La bio-activité de ce vecteur a été testé et validée dans un modèle de laser, connu pour induire des néovascularisations choroïdiennes chez la souris suite à l'augmentation du VEGF. Ce vecteur a ensuite été utilisé dans le modèle de dégénération induite par la lumière. Les résultats des électrorétinogrammes, les mesures de l'acuité visuelle et les analyses histologiques ont montré que l'injection du LV-V65 contribue à la maintenance de photorécepteurs fonctionnels. Au niveau de l'EP, l'absence d'albumine et la maintenance des jonctions cellulaires des cellules de l'EP ont démontré que l'intégrité de la barrière hémato-rétinienne externe est préservée suite au traitement.Par conséquent, tous les résultats obtenus indiquent que le VEGF est un médiateur important impliquée dans le processus de dégénération induit par la lumière et confirme le rôle cruciale de la balance entre les facteurs pro- et anti-angiogéniques dans la survie des photorécepteurs. Cette étude révèle également l'importance de l'intégrité de la barrière hémato-rétinienne et l'importance du lien fonctionnel et structurel entre l'EP et les photorécepteurs, essentiel pour la survie de ces derniers. Par ailleurs, Cette étude suggère que des dérèglements au niveau de l'équilibre du VEGF ne sont pas seulement impliqués dans la forme humide de la DMLA, comme déjà démontré dans des études antérieures, mais pourraient également contribuer et survenir dans des formes précoces de la DMLA, et par conséquent le VEGF représente une cible thérapeutique potentielle pour les maladies associées à des anomalies au niveau de l'EP.
Resumo:
Surface characteristics (area, chemical reactivity) play an important role in cell response to nanomaterials. The aim of this study was to evaluate the oxidative and inflammatory effects of multi−wall carbon nanotubes (MWCNT) uncoated (P0) or coated with carboxylic polyacid or polystyrene polybutadiene polymetacrylate of methyl polymers (P1 and P2 respectively) on murine macrophages (RAW 264.7 cell line). Carbon black nanoparticles (CB, diameter 95 nm) and crocidolite fibers (diameter: 80 nm, length: < 10 μm) were used as controls. Surface functional groups present on MWCNTs were analyzed by Knudsen flow reactor. The amount of acidic sites was P1> P0> P2, for basic sites was P0> P1>> P2 and for oxidizable sites was P0> P2> P1. In contact with cells, P2 formed smaller aggregates than P0 and P1, which were of similar size. Optical microscopy showed the formation of vacuoles after exposure only to P0, P1 and crocidolite. Incubation of cells with P0, P1 and crocidolite fibers induced a significant and similar decrease in metabolic activity, whereas P2 and CB had no effect. Cell number and membrane permeability were unmodified by incubation with the different particles. Incubation of macrophages with P0, P1 and crocidolite induced a dose− and time−dependent increase in mRNA expression of oxidative stress marker (HO−1, GPX1) and inflammatory mediators (TNF−a, MIP−2). No such responses were observed with P2 and CB. In conclusion, MWCNT coated with a carboxylic polyacid polymer exerted similar oxidative and inflammatory effects to uncoated MWCNT. By contrast, no such effects were observed with MWCNT coated with a polystyrene−based polymer. This kind of coating could be useful to decrease MWCNT toxicity.
Resumo:
PURPOSE OF REVIEW: We present an overview of recent concepts in mechanisms underlying cognitive decline associated with brain aging and neurodegeneration from the perspective of MRI. RECENT FINDINGS: Recent findings challenge the established link between neuroimaging biomarkers of neurodegeneration and age-related or disease-related cognitive decline. Amyloid burden, white matter hyperintensities and local patterns of brain atrophy seem to have differential impact on cognition, particularly on episodic and working memory - the most vulnerable domains in 'normal aging' and Alzheimer's disease. Studies suggesting that imaging biomarkers of neurodegeneration are independent of amyloid-β give rise to new hypothesis regarding the pathological cascade in Alzheimer's disease. Findings in patients with autosomal-dominant Alzheimer's disease confirm the notion of differential temporal trajectory of amyloid deposition and brain atrophy to add another layer of complexity on the basic mechanisms of cognitive aging and neurodegeneration. Finally, the concept of cognitive reserve in 'supernormal aging' is questioned by evidence for the preservation of neurochemical, structural and functional brain integrity in old age rather than recruitment of 'reserves' for maintaining cognitive abilities. SUMMARY: Recent advances in clinical neuroscience, brain imaging and genetics challenge pathophysiological hypothesis of neurodegeneration and cognitive aging dominating the field in the last decade and call for reconsidering the choice of therapeutic window for early intervention.
Resumo:
Signaling through the Notch1 receptor is essential for the control of numerous developmental processes during embryonic life as well as in adult tissue homeostasis and disease. Since the outcome of Notch1 signaling is highly context-dependent, and its precise physiological and pathological role in many organs is unclear, it is of great interest to localize and identify the cells that receive active Notch1 signals in vivo. Here, we report the generation and characterization of a BAC-transgenic mouse line, N1-Gal4VP16, that when crossed to a Gal4-responsive reporter mouse line allowed the identification of cells undergoing active Notch1 signaling in vivo. Analysis of embryonic and adult N1-Gal4VP16 mice demonstrated that the activation pattern of the transgene coincides with previously observed activation patterns of the endogenous Notch1 receptor. Thus, this novel reporter mouse line provides a unique tool to specifically investigate the spatial and temporal aspects of Notch1 signaling in vivo. genesis 50:700-710, 2012. © 2012 Wiley Periodicals, Inc.
Resumo:
The adult mammalian forebrain contains neural stem/progenitor cells (NSCs) that generate neurons throughout life. As in other somatic stem cell systems, NSCs are proposed to be predominantly quiescent and proliferate only sporadically to produce more committed progeny. However, quiescence has recently been shown not to be an essential criterion for stem cells. It is not known whether NSCs show differences in molecular dependence based on their proliferation state. The subventricular zone (SVZ) of the adult mouse brain has a remarkable capacity for repair by activation of NSCs. The molecular interplay controlling adult NSCs during neurogenesis or regeneration is not clear but resolving these interactions is critical in order to understand brain homeostasis and repair. Using conditional genetics and fate mapping, we show that Notch signaling is essential for neurogenesis in the SVZ. By mosaic analysis, we uncovered a surprising difference in Notch dependence between active neurogenic and regenerative NSCs. While both active and regenerative NSCs depend upon canonical Notch signaling, Notch1-deletion results in a selective loss of active NSCs (aNSCs). In sharp contrast, quiescent NSCs (qNSCs) remain after Notch1 ablation until induced during regeneration or aging, whereupon they become Notch1-dependent and fail to fully reinstate neurogenesis. Our results suggest that Notch1 is a key component of the adult SVZ niche, promoting maintenance of aNSCs, and that this function is compensated in qNSCs. Therefore, we confirm the importance of Notch signaling for maintaining NSCs and neurogenesis in the adult SVZ and reveal that NSCs display a selective reliance on Notch1 that may be dictated by mitotic state.
Resumo:
The Cbeta0 alternate cassette exon is located between the Jbeta1 and Cbeta1 genes in the mouse TCR beta-locus. In T cells with a VDJbeta1 rearrangement, the Cbeta0 exon may be included in TCRbeta transcripts (herein called TCRbeta-Cbeta0 transcripts), potentially inserting an additional 24 aa between the V and C domains of the TCR beta-chain. These TCRbeta splice isoforms may be differentially regulated after Ag activation, because we detected TCRbeta-Cbeta0 transcripts in a high proportion (>60%) of immature and mature T cells having VDJbeta1 rearrangements but found a substantially reduced frequency (<35%) of TCRbeta-Cbeta0 expression among CD8 T cells selected by Ag in vivo. To study the potential activity of the TCRbeta-Cbeta0 splice variant, we cloned full-length TCR cDNAs by single-cell RT-PCR into retroviral expression vectors. We found that the TCRbeta-Cbeta0 splice isoform can function during an early stage of T cell development normally dependent on TCR beta-chain expression. We also demonstrate that T hybridoma-derived cells expressing a TCRbeta-Cbeta0 isoform together with the clonally associated TCR alpha-chain recognize the same cognate peptide-MHC ligand as the corresponding normal alphabetaTCR. This maintenance of receptor function and specificity upon insertion of the Cbeta0 peptide cassette signifies a remarkable adaptability for the TCR beta-chain, and our findings open the possibility that this splice isoform may function in vivo.
Resumo:
BACKGROUND: Alpha-dystroglycan (alpha-DG) is a cell surface receptor providing a molecular link between the extracellular matrix (ECM) and the actin-based cytoskeleton. During its biosynthesis, alpha-DG undergoes specific and unusual O-glycosylation crucial for its function as a high-affinity cellular receptor for ECM proteins. METHODOLOGY/PRINCIPAL FINDINGS: We report that expression of functionally glycosylated alpha-DG during thymic development is tightly regulated in developing T cells and largely confined to CD4(-)CD8(-) double negative (DN) thymocytes. Ablation of DG in T cells had no effect on proliferation, migration or effector function but did reduce the size of the thymus due to a significant loss in absolute numbers of thymocytes. While numbers of DN thymocytes appeared normal, a marked reduction in CD4(+)CD8(+) double positive (DP) thymocytes occurred. In the periphery mature naïve T cells deficient in DG showed both normal proliferation in response to allogeneic cells and normal migration, effector and memory T cell function when tested in acute infection of mice with either lymphocytic choriomeningitis virus (LCMV) or influenza virus. CONCLUSIONS/SIGNIFICANCE: Our study demonstrates that DG function is modulated by glycosylation during T cell development in vivo and that DG is essential for normal development and differentiation of T cells.
Resumo:
In human, neuronal migration disorders are commonly associated with developmental delay, mental retardation, and epilepsy. We describe here a new mouse mutant that develops a heterotopic cortex (HeCo) lying in the dorsolateral hemispheric region, between the homotopic cortex (HoCo) and subcortical white matter. Cross-breeding demonstrated an autosomal recessive transmission. Birthdating studies and immunochemistry for layer-specific markers revealed that HeCo formation was due to a transit problem in the intermediate zone affecting both radially and tangentially migrating neurons. The scaffold of radial glial fibers, as well as the expression of doublecortin is not altered in the mutant. Neurons within the HeCo are generated at a late embryonic age (E18) and the superficial layers of the HoCo have a correspondingly lower cell density and layer thickness. Parvalbumin immunohistochemistry showed the presence of gamma-aminobutyric acidergic cells in the HeCo and the mutant mice have a lowered threshold for the induction of epileptic seizures. The mutant showed a developmental delay but, in contrast, memory function was relatively spared. Therefore, this unique mouse model resembles subcortical band heterotopia observed in human. This model represents a new and rare tool to better understand cortical development and to investigate future therapeutic strategies for refractory epilepsy.
Resumo:
Metastasis depends on the ability of tumor cells to establish a relationship with the newly seeded tissue that is conducive to their survival and proliferation. However, the factors that render tissues permissive for metastatic tumor growth have yet to be fully elucidated. Breast tumors arising during pregnancy display early metastatic proclivity, raising the possibility that pregnancy may constitute a physiological condition of permissiveness for tumor dissemination. Here we have shown that during murine gestation, metastasis is enhanced regardless of tumor type, and that decreased NK cell activity is responsible for the observed increase in experimental metastasis. Gene expression changes in pregnant mouse lung and liver were shown to be similar to those detected in premetastatic sites and indicative of myeloid cell infiltration. Indeed, myeloid-derived suppressor cells (MDSCs) accumulated in pregnant mice and exerted an inhibitory effect on NK cell activity, providing a candidate mechanism for the enhanced metastatic tumor growth observed in gestant mice. Although the functions of MDSCs are not yet understood in the context of pregnancy, our observations suggest that they may represent a shared mechanism of immune suppression occurring during gestation and tumor growth.