433 resultados para imaging space


Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIM: To determine the long-term prognostic value of SPECT myocardial perfusion imaging (MPI) for the occurrence of cardiovascular events in diabetic patients. PATIENTS, METHODS: SPECT MPI of 210 consecutive Caucasian diabetic patients were analysed using Kaplan-Meier event-free survival curves and independent predictors were determined by Cox multivariate analyses. RESULTS: Follow-up was complete in 200 (95%) patients with a median period of 3.0 years (0.8-5.0). The population was composed of 114 (57%) men, age 65 +/- 10 years, 181 (90.5%) type 2 diabetes mellitus, 50 (25%) with a history of coronary artery disease (CAD) and 98 (49%) presenting chest pain prior to MPI. The prevalence of abnormal MPI was 58%. Patients with a normal MPI had neither cardiac death, nor myocardial infarction, independently of a history of coronary artery disease or chest pain. Among the independent predictors of cardiac death and myocardial infarction, the strongest was abnormal MPI (p < 0.0001), followed by history of CAD (Hazard Ratio (HR) = 15.9; p = 0.0001), diabetic retinopathy (HR = 10.0; p = 0.001) and inability to exercise (HR = 7.7; p = 0.02). Patients with normal MPI had a low revascularisation rate of 2.4% during the follow-up period. Compared to normal MPI, cardiovascular events increased 5.2 fold for reversible defects, 8.5 fold for fixed defects and 20.1 fold for the association of both defects. CONCLUSION: Diabetic patients with normal MPI had an excellent prognosis independently of history of CAD. On the opposite, an abnormal MPI led to a >5-fold increase in cardiovascular events. This emphasizes the value of SPECT MPI in predicting and risk-stratifying cardiovascular events in diabetic patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the assessment of medical malpractice imaging methods can be used for the documentation of crucial morphological findings which are indicative for or against an iatrogenically caused injury. The clarification of deaths in this context can be usefully supported by postmortem imaging (primarily native computed tomography, angiography, magnetic resonance imaging). Postmortem imaging offers significant additional information compared to an autopsy in the detection of iatrogenic air embolisms and documentation of misplaced medical aids before dissection with an inherent danger of relocation. Additional information is supplied by postmortem imaging in the search for sources of bleeding as well as the documentation of perfusion after cardiovascular surgery. Key criteria for the decision to perform postmortem imaging can be obtained from the necessary preliminary inspection of clinical documentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of RGD-based antagonist of αvβ3 integrin receptor has enhanced the interest in PET probes to image this receptor for the early detection of cancer, to monitor the disease progression and the response to therapy. In this work, a novel prosthetic group (N-(4-fluorophenyl)pent-4-ynamide or FPPA) for the (18)F-labeling of an αvβ3 selective RGD-peptide was successfully prepared. [(18)F]FPPA was obtained in three steps with a radiochemical yield of 44% (decay corrected). Conjugation to c(RGDfK(N3)) by the Cu(II) catalyzed Huisgen azido alkyne cycloaddition provided the [(18)F]FPPA-c(RGDfK) with a radiochemical yield of 29% (decay corrected), in an overall synthesis time of 140min.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Papez circuit is one of the major pathways of the limbic system, and it is involved in the control of memory and emotion. Structural and functional alterations have been reported in psychiatric, neurodegenerative, and epileptic diseases. Despite the clinical interest, however, in-vivo imaging of the entire circuit remains a technological challenge. We used magnetic resonance diffusion spectrum imaging to comprehensively picture the Papez circuit in healthy humans: (i) the hippocampus-mammillary body pathway, (ii) the connections between the lateral subiculum and the cingulate cortex, and (iii) the mammillo-thalamic tract. The diagnostic and therapeutic implications of these results are discussed in the context of recent findings reporting the involvement of the Papez circuit in neurological and psychiatric diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper proposes an approach aimed at detecting optimal model parameter combinations to achieve the most representative description of uncertainty in the model performance. A classification problem is posed to find the regions of good fitting models according to the values of a cost function. Support Vector Machine (SVM) classification in the parameter space is applied to decide if a forward model simulation is to be computed for a particular generated model. SVM is particularly designed to tackle classification problems in high-dimensional space in a non-parametric and non-linear way. SVM decision boundaries determine the regions that are subject to the largest uncertainty in the cost function classification, and, therefore, provide guidelines for further iterative exploration of the model space. The proposed approach is illustrated by a synthetic example of fluid flow through porous media, which features highly variable response due to the parameter values' combination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diagnosis of idiopathic Parkinson's disease (IPD) is entirely clinical. The fact that neuronal damage begins 5-10 years before occurrence of sub-clinical signs, underlines the importance of preclinical diagnosis. A new approach for in-vivo pathophysiological assessment of IPD-related neurodegeneration was implemented based on recently developed neuroimaging methods. It is based on non- invasive magnetic resonance data sensitive to brain tissue property changes that precede macroscopic atrophy in the early stages of IPD. This research aims to determine the brain tissue property changes induced by neurodegeneration that can be linked to clinical phenotypes which will allow us to create a predictive model for early diagnosis in IPD. We hypothesized that the degree of disease progression in IPD patients will have a differential and specific impact on brain tissue properties used to create a predictive model of motor and non-motor impairment in IPD. We studied the potential of in-vivo quantitative imaging sensitive to neurodegeneration- related brain tissue characteristics to detect changes in patients with IPD. We carried out methodological work within the well established SPM8 framework to estimate the sensitivity of tissue probability maps for automated tissue classification for detection of early IPD. We performed whole-brain multi parameter mapping at high resolution followed by voxel-based morphometric (VBM) analysis and voxel-based quantification (VBQ) comparing healthy subjects to IPD patients. We found a trend demonstrating non-significant tissue property changes in the olfactory bulb area using the MT and R1 parameter with p<0.001. Comparing to the IPD patients, the healthy group presented a bilateral higher MT and R1 intensity in this specific functional region. These results did not correlate with age, severity or duration of disease. We failed to demonstrate any changes with the R2* parameter. We interpreted our findings as demyelination of the olfactory tract, which is clinically represented as anosmia. However, the lack of correlation with duration or severity complicates its implications in the creation of a predictive model of impairment in IPD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peter Karlson and Martin Lüscher used the term pheromone for the first time in 1959 to describe chemicals used for intra-species communication. Pheromones are volatile or non-volatile short-lived molecules secreted and/or contained in biological fluids, such as urine, a liquid known to be a main source of pheromones. Pheromonal communication is implicated in a variety of key animal modalities such as kin interactions, hierarchical organisations and sexual interactions and are consequently directly correlated with the survival of a given species. In mice, the ability to detect pheromones is principally mediated by the vomeronasal organ (VNO), a paired structure located at the base of the nasal cavity, and enclosed in a cartilaginous capsule. Each VNO has a tubular shape with a lumen allowing the contact with the external chemical world. The sensory neuroepithelium is principally composed of vomeronasal bipolar sensory neurons (VSNs). Each VSN extends a single dendrite to the lumen ending in a large dendritic knob bearing up to 100 microvilli implicated in chemical detection. Numerous subpopulations of VSNs are present. They are differentiated by the chemoreceptor they express and thus possibly by the ligand(s) they recognize. Two main vomeronasal receptor families, V1Rs and V2Rs, are composed respectively by 240 and 120 members and are expressed in separate layers of the neuroepithelium. Olfactory receptors (ORs) and formyl peptide receptors (FPRs) are also expressed in VSNs. Whether or not these neuronal subpopulations use the same downstream signalling pathway for sensing pheromones is unknown. Despite a major role played by a calcium-permeable channel (TRPC2) present in the microvilli of mature neurons TRPC2 independent transduction channels have been suggested. Due to the high number of neuronal subpopulations and the peculiar morphology of the organ, pharmacological and physiological investigations of the signalling elements present in the VNO are complex. Here, we present an acute tissue slice preparation of the mouse VNO for performing calcium imaging investigations. This physiological approach allows observations, in the natural environment of a living tissue, of general or individual subpopulations of VSNs previously loaded with Fura-2AM, a calcium dye. This method is also convenient for studying any GFP-tagged pheromone receptor and is adaptable for the use of other fluorescent calcium probes. As an example, we use here a VG mouse line, in which the translation of the pheromone V1rb2 receptor is linked to the expression of GFP by a polycistronic strategy.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To determine the usefulness of computed tomography (CT), magnetic resonance imaging (MRI), and Doppler ultrasonography (US) in providing specific images of gouty tophi. METHODS: Four male patients with chronic gout with tophi affecting the knee joints (three cases) or the olecranon processes of the elbows (one case) were assessed. Crystallographic analyses of the synovial fluid or tissue aspirates of the areas of interest were made with polarising light microscopy, alizarin red staining, and x ray diffraction. CT was performed with a GE scanner, MR imaging was obtained with a 1.5 T Magneton (Siemens), and ultrasonography with colour Doppler was carried out by standard technique. RESULTS: Crystallographic analyses showed monosodium urate (MSU) crystals in the specimens of the four patients; hydroxyapatite and calcium pyrophosphate dihydrate (CPPD) crystals were not found. A diffuse soft tissue thickening was seen on plain radiographs but no calcifications or ossifications of the tophi. CT disclosed lesions containing round and oval opacities, with a mean density of about 160 Hounsfield units (HU). With MRI, lesions were of low to intermediate signal intensity on T(1) and T(2) weighting. After contrast injection in two cases, enhancement of the tophus was seen in one. Colour Doppler US showed the tophi to be hypoechogenic with peripheral increase of the blood flow in three cases. CONCLUSION: The MR and colour Doppler US images showed the tophi as masses surrounded by a hypervascular area, which cannot be considered as specific for gout. But on CT images, masses of about 160 HU density were clearly seen, which correspond to MSU crystal deposits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Surface magnetic resonance imaging (MRI) for aortic plaque assessment is limited by the trade-off between penetration depth and signal-to-noise ratio (SNR). For imaging the deep seated aorta, a combined surface and transesophageal MRI (TEMRI) technique was developed 1) to determine the individual contribution of TEMRI and surface coils to the combined signal, 2) to measure the signal improvement of a combined surface and TEMRI over surface MRI, and 3) to assess for reproducibility of plaque dimension analysis. METHODS AND RESULTS: In 24 patients six black blood proton-density/T2-weighted fast-spin echo images were obtained using three surface and one TEMRI coil for SNR measurements. Reproducibility of plaque dimensions (combined surface and TEMRI) was measured in 10 patients. TEMRI contributed 68% of the signal in the aortic arch and descending aorta, whereas the overall signal gain using the combined technique was up to 225%. Plaque volume measurements had an intraclass correlation coefficient of as high as 0.97. CONCLUSION: Plaque volume measurements for the quantification of aortic plaque size are highly reproducible for combined surface and TEMRI. The TEMRI coil contributes considerably to the aortic MR signal. The combined surface and TEMRI approach improves aortic signal significantly as compared to surface coils alone. CONDENSED ABSTRACT: Conventional MRI aortic plaque visualization is limited by the penetration depth of MRI surface coils and may lead to suboptimal image quality with insufficient reproducibility. By combining a transesophageal MRI (TEMRI) with surface MRI coils we enhanced local and overall image SNR for improved image quality and reproducibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to their relatively small size and central location within the thorax, improvement in signal-to-noise (SNR) is of paramount importance for in vivo coronary vessel wall imaging. Thus, with higher field strengths, coronary vessel wall imaging is likely to benefit from the expected "near linear" proportional gain in SNR. In this study, we demonstrate the feasibility of in vivo human high field (3 T) coronary vessel wall imaging using a free-breathing black blood fast gradient echo technique with respiratory navigator gating and real-time motion correction. With the broader availability of more SNR efficient fast spin echo and spiral techniques, further improvements can be expected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The large spatial inhomogeneity in transmit B(1) field (B(1)(+)) observable in human MR images at high static magnetic fields (B(0)) severely impairs image quality. To overcome this effect in brain T(1)-weighted images, the MPRAGE sequence was modified to generate two different images at different inversion times, MP2RAGE. By combining the two images in a novel fashion, it was possible to create T(1)-weighted images where the result image was free of proton density contrast, T(2) contrast, reception bias field, and, to first order, transmit field inhomogeneity. MP2RAGE sequence parameters were optimized using Bloch equations to maximize contrast-to-noise ratio per unit of time between brain tissues and minimize the effect of B(1)(+) variations through space. Images of high anatomical quality and excellent brain tissue differentiation suitable for applications such as segmentation and voxel-based morphometry were obtained at 3 and 7 T. From such T(1)-weighted images, acquired within 12 min, high-resolution 3D T(1) maps were routinely calculated at 7 T with sub-millimeter voxel resolution (0.65-0.85 mm isotropic). T(1) maps were validated in phantom experiments. In humans, the T(1) values obtained at 7 T were 1.15+/-0.06 s for white matter (WM) and 1.92+/-0.16 s for grey matter (GM), in good agreement with literature values obtained at lower spatial resolution. At 3 T, where whole-brain acquisitions with 1 mm isotropic voxels were acquired in 8 min, the T(1) values obtained (0.81+/-0.03 s for WM and 1.35+/-0.05 for GM) were once again found to be in very good agreement with values in the literature.