344 resultados para TNF RECEPTORS
Resumo:
BACKGROUND: The purpose of this study is to describe the experience of Jules Gonin Eye Hospital on the long-term outcome of anti-TNF-alpha therapy in chronic non-infectious uveitis. PATIENTS AND METHODS: We identified and followed those patients with chronic non-infectious uveitis who received systemic anti-TNF-alpha therapy. Anti-TNF-alpha therapy was administered when no response had been obtained with classical immunosuppressive therapies or in the presence of severe rheumatoid disease. RESULTS: Fifteen patients (28 eyes), 7 male and 8 female (mean age, 43 years; range: 7 to 70 years) were identified. Diagnoses included HLA-B27-associated anterior uveitis (n = 4), sarcoidosis (n = 2), juvenile idiopathic arthritis (n = 2), idiopathic retinal vasculitis with uveitis (n = 2), pars planitis (n = 2), Adamantiades-Behçet disease (n = 1), birdshot retinochoroidopathy (n = 1), and Crohn's disease (n = 1). Mean duration of ocular disease was 8 years (range: 1 to 29 years). Treatment with infliximab (n = 11), etanercept (n = 2), or adalimumab (n = 2) was initiated. One patient with etanercept was switched to infliximab due to lack of clinical response. Clinical and angiographic regression of uveitis was observed within the first two months of therapy in all patients, and was maintained throughout the entire follow-up period (mean 18 months; range: 3 - 72 months). Recurrence was observed in 3 patients, and resolved after adjustment of therapy. Adverse events were recorded in only one patient (arterial hypotension). CONCLUSIONS: In this series of patients with chronic non-infectious uveitis, anti-TNF-alpha therapy was effective and safe. Further clinical studies are needed to determine an adequate duration of therapy.
Resumo:
The T-type Ca(2+) channels encoded by the Ca(V)3 genes are well established electrogenic drivers for burst discharge. Here, using Ca(V)3.3(-/-) mice we found that Ca(V)3.3 channels trigger synaptic plasticity in reticular thalamic neurons. Burst discharge via Ca(V)3.3 channels induced long-term potentiation at thalamoreticular inputs when coactivated with GluN2B-containing NMDA receptors, which are the dominant subtype at these synapses. Notably, oscillatory burst discharge of reticular neurons is typical for sleep-related rhythms, suggesting that sleep contributes to strengthening intrathalamic circuits.
Resumo:
TWEAK, a TNF family ligand with pleiotropic cellular functions, was originally described as capable of inducing tumor cell death in vitro. TWEAK functions by binding its receptor, Fn14, which is up-regulated on many human solid tumors. Herein, we show that intratumoral administration of TWEAK, delivered either by an adenoviral vector or in an immunoglobulin Fc-fusion form, results in significant inhibition of tumor growth in a breast xenograft model. To exploit the TWEAK-Fn14 pathway as a therapeutic target in oncology, we developed an anti-Fn14 agonistic antibody, BIIB036. Studies described herein show that BIIB036 binds specifically to Fn14 but not other members of the TNF receptor family, induces Fn14 signaling, and promotes tumor cell apoptosis in vitro. In vivo, BIIB036 effectively inhibits growth of tumors in multiple xenograft models, including colon (WiDr), breast (MDA-MB-231), and gastric (NCI-N87) tumors, regardless of tumor cell growth inhibition response observed to BIIB036 in vitro. The anti-tumor activity in these cell lines is not TNF-dependent. Increasing the antigen-binding valency of BIB036 significantly enhances its anti-tumor effect, suggesting the contribution of higher order cross-linking of the Fn14 receptor. Full Fc effector function is required for maximal activity of BIIB036 in vivo, likely due to the cross-linking effect and/or ADCC mediated tumor killing activity. Taken together, the anti-tumor properties of BIIB036 validate Fn14 as a promising target in oncology and demonstrate its potential therapeutic utility in multiple solid tumor indications.
Resumo:
The TNF family ligand ectodysplasin A (EDA) and its receptor EDAR are required for proper development of skin appendages such as hair, teeth, and eccrine sweat glands. Loss of function mutations in the Eda gene cause X-linked hypohidrotic ectodermal dysplasia (XLHED), a condition that can be ameliorated in mice and dogs by timely administration of recombinant EDA. In this study, several agonist anti-EDAR monoclonal antibodies were generated that cross-react with the extracellular domains of human, dog, rat, mouse, and chicken EDAR. Their half-life in adult mice was about 11 days. They induced tail hair and sweat gland formation when administered to newborn EDA-deficient Tabby mice, with an EC(50) of 0.1 to 0.7 mg/kg. Divalency was necessary and sufficient for this therapeutic activity. Only some antibodies were also agonists in an in vitro surrogate activity assay based on the activation of the apoptotic Fas pathway. Activity in this assay correlated with small dissociation constants. When administered in utero in mice or at birth in dogs, agonist antibodies reverted several ectodermal dysplasia features, including tooth morphology. These antibodies are therefore predicted to efficiently trigger EDAR signaling in many vertebrate species and will be particularly suited for long term treatments.
Resumo:
The cytoskeleton is essential for the structural organization of neurons and is influenced during development by excitatory stimuli such as activation of glutamate receptors. In particular, NMDA receptors are known to modulate the function of several cytoskeletal proteins and to influence cell morphology, but the underlying molecular and cellular mechanisms remain unclear. Here, we characterized the neurofilament subunit NF-M in cultures of developing mouse cortical neurons chronically exposed to NMDA receptor antagonists. Western blots analysis showed that treatment of cortical neurons with MK801 or AP5 shifted the size of NF-M towards higher molecular weights. Dephosphorylation assay revealed that this increased size of NF-M observed after chronic exposure to NMDA receptor antagonists was due to phosphorylation. Neurons treated with cyclosporin, an inhibitor of the Ca(2+)-dependent phosphatase calcineurin, also showed increased levels of phosphorylated NF-M. Moreover, analysis of neurofilament stability revealed that the phosphorylation of NF-M, resulting from NMDA receptor inhibition, enhanced the solubility of NF-M. Finally, cortical neurons cultured in the presence of the NMDA receptor antagonists MK801 and AP5 grew longer neurites. Together, these data indicate that a blockade of NMDA receptors during development of cortical neurons increases the phosphorylation state and the solubility of NF-M, thereby favoring neurite outgrowth. This also underlines that dynamics of the neurofilament and microtubule cytoskeleton is fundamental for growth processes.
Resumo:
The TNF family ligand B cell-activating factor (BAFF, BLyS, TALL-1) is an essential factor for B cell development. BAFF binds to three receptors, BAFF-R, transmembrane activator and CAML interactor (TACI), and B cell maturation antigen (BCMA), but only BAFF-R is required for successful survival and maturation of splenic B cells. To test whether the effect of BAFF is due to the up-regulation of anti-apoptotic factors, TACI-Ig-transgenic mice, in which BAFF function is inhibited, were crossed with transgenic mice expressing FLICE-inhibitory protein (FLIP) or Bcl-2 in the B cell compartment. FLIP expression did not rescue B cells, while enforced Bcl-2 expression restored peripheral B cells and the ability to mount T-dependent antibody responses. However, many B cells retained immaturity markers and failed to express normal amounts of CD21. Marginal zone B cells were not restored and the T-independent IgG3, but not IgM, response was impaired in the TACI-IgxBcl-2 mice. These results suggest that BAFF is required not only to inhibit apoptosis of maturating B cells, but also to promote differentiation events, in particular those leading to the generation of marginal zone B cells.
Resumo:
PURPOSE: To centrally assess estrogen receptor (ER) and progesterone receptor (PgR) levels by immunohistochemistry and investigate their predictive value for benefit of chemo-endocrine compared with endocrine adjuvant therapy alone in two randomized clinical trials for node-negative breast cancer. PATIENTS AND METHODS: International Breast Cancer Study Group Trial VIII compared cyclophosphamide, methotrexate, and fluorouracil (CMF) chemotherapy for 6 cycles followed by endocrine therapy with goserelin with either modality alone in pre- and perimenopausal patients. Trial IX compared three cycles of CMF followed by tamoxifen for 5 years versus tamoxifen alone in postmenopausal patients. Central Pathology Office reviewed 883 (83%) of 1,063 patients on Trial VIII and 1,365 (82%) of 1,669 on Trial IX and determined ER and PgR by immunohistochemistry. Disease-free survival (DFS) was compared across the spectrum of expression of each receptor using the Subpopulation Treatment Effect Pattern Plot methodology. RESULTS: Both receptors displayed a bimodal distribution, with substantial proportions showing no staining (receptor absent) and most of the remainder showing a high percentage of stained cells. Chemo-endocrine therapy yielded DFS superior to endocrine therapy alone for patients with receptor-absent tumors, and in some cases also for those with low levels of receptor expression. Among patients with ER-expressing tumors, additional prediction of benefit was suggested in absent or low PgR in Trial VIII but not in Trial IX. CONCLUSION: Low levels of ER and PgR are predictive of the benefit of adding chemotherapy to endocrine therapy. Low PgR may add further prediction among pre- and perimenopausal but not postmenopausal patients whose tumors express ER.
Resumo:
As B-cells are crucial for the production of antibodies and also in antigen presentation, they can play an important role in autoimmune connective tissue disease. B-cell surface antigens and receptors which are capable of activating B-cell function have been proposed as targets for therapy in these diseases. Anti-B cell treatments have been used recently in SLE and primary Sjogren's syndrome in a number of open studies, notably anti-CD20 (rituximab), with encouraging results. An anti-BAFF antibody (belimumab) has been tested in patients with SLE and also showed positive results in patients with increased levels of autoantibodies. In contrast, anti-TNF therapy in connective tissue disease and in RA can increase the levels of autoantibodies. Further studies are needed to define the place of these novel treatments in the management of autoimmune connective tissue diseases.
Resumo:
TNF is well characterized as a mediator of inflammatory responses. TNF also facilitates organization of secondary lymphoid organs, particularly B cell follicles and germinal centers, a hallmark of T-dependent Ab responses. TNF also mediates defense against tumors. We examined the role of TNF in the development of inflammatory autoimmune disorders resembling systemic lupus erythematosus and Sjögren's syndrome induced by excess B cell-activating factor belonging to the TNF family (BAFF), by generating BAFF-transgenic (Tg) mice lacking TNF. TNF(-/-) BAFF-Tg mice resembled TNF(-/-) mice, in that they lacked B cell follicles, follicular dendritic cells, and germinal centers, and have impaired responses to T-dependent Ags. Nevertheless, TNF(-/-) BAFF-Tg mice developed autoimmune disorders similar to that of BAFF-Tg mice. Disease in TNF(-/-) BAFF-Tg mice correlates with the expansion of transitional type 2 and marginal zone B cell populations and enhanced T-independent immune responses. TNF deficiency in BAFF-Tg mice also led to a surprisingly high incidence of B cell lymphomas (>35%), which most likely resulted from the combined effects of BAFF promotion of neoplastic B cell survival, coupled with lack of protective antitumor defense by TNF. Thus, TNF appears to be dispensable for BAFF-mediated autoimmune disorders and may, in fact, counter any proneoplastic effects of high levels of BAFF in diseases such as Sjögren's syndrome, systemic lupus erythematosus, and rheumatoid arthritis.
Insulin and insulin-like growth factor I receptors utilize different G protein signaling components.
Resumo:
We examined the role of heterotrimeric G protein signaling components in insulin and insulin-like growth factor I (IGF-I) action. In HIRcB cells and in 3T3L1 adipocytes, treatment with the Galpha(i) inhibitor (pertussis toxin) or microinjection of the Gbetagamma inhibitor (glutathione S-transferase-betaARK) inhibited IGF-I and lysophosphatidic acid-stimulated mitogenesis but had no effect on epidermal growth factor (EGF) or insulin action. In basal state, Galpha(i) and Gbeta were associated with the IGF-I receptor (IGF-IR), and after ligand stimulation the association of IGF-IR with Galpha(i) increased concomitantly with a decrease in Gbeta association. No association of Galpha(i) was found with either the insulin or EGF receptor. Microinjection of anti-beta-arrestin-1 antibody specifically inhibited IGF-I mitogenic action but had no effect on EGF or insulin action. beta-Arrestin-1 was associated with the receptors for IGF-I, insulin, and EGF in a ligand-dependent manner. We demonstrated that Galpha(i), betagamma subunits, and beta-arrestin-1 all play a critical role in IGF-I mitogenic signaling. In contrast, neither metabolic, such as GLUT4 translocation, nor mitogenic signaling by insulin is dependent on these protein components. These results suggest that insulin receptors and IGF-IRs can function as G protein-coupled receptors and engage different G protein partners for downstream signaling.
Resumo:
The cysteine protease caspase-8 is an essential executioner of the death receptor (DR) apoptotic pathway. The physiological function of its homologue caspase-10 remains poorly understood, and the ability of caspase-10 to substitute for caspase-8 in the DR apoptotic pathway is still controversial. Here, we analysed the particular contribution of caspase-10 isoforms to DR-mediated apoptosis in neuroblastoma (NB) cells characterised by their resistance to DR signalling. Silencing of caspase-8 in tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-sensitive NB cells resulted in complete resistance to TRAIL, which could be reverted by overexpression of caspase-10A or -10D. Overexpression experiments in various caspase-8-expressing tumour cells also demonstrated that caspase-10A and -10D isoforms strongly increased TRAIL and FasL sensitivity, whereas caspase-10B or -10G had no effect or were weakly anti-apoptotic. Further investigations revealed that the unique C-terminal end of caspase-10B was responsible for its degradation by the ubiquitin-proteasome pathway and for its lack of pro-apoptotic activity compared with caspase-10A and -10D. These data highlight in several tumour cell types, a differential pro- or anti-apoptotic role for the distinct caspase-10 isoforms in DR signalling, which may be relevant for fine tuning of apoptosis initiation.
Resumo:
Background. Toll-like receptors (TLR) recognize a variety of ligands, including pathogen-associated molecular patterns and link innate and adaptive immunity. Individual receptors can be up-regulated during infection and inflammation. We examined the expression of selected TLRs at the protein level in various types of renal disease.Methods. Frozen sections of renal biopsies were stained with monoclonal antibodies to TLR-2, -4 and -9.Results. Up-regulation of the three TLRs studied was seen, although the extent was modest. TLR-2- and -4-positive cells belonged to the population of infiltrating inflammatory cells; only in the case of TLR-9 were intrinsic glomerular cells positive in polyoma virus infection and haemolytic uraemic syndrome (HUS).Conclusions. Evidence for the involvement of the three TLRs tested in a variety of human renal diseases was found. These findings add to our understanding of the role of the innate immune system in kidney disease.
Resumo:
Background and Aims: The three anti-TNF agents infliximab (IFX), adalimumab (ADA) andcertolizumab pegol (CZP) have demonstrated similar efficacy in induction and maintenanceof response and remission in Crohn's disease (CD) treatment. Given the comparability ofthese drugs, patient's preferences may influence the choice of the product. However, dataon patient's preferences for choosing anti-TNF agents are lacking. We therefore aimed toassess the CD patient's appraisal to select the drug of his choice and to identify factorsguiding this decision.Methods: A prospective survey among anti-TNF-naive CD patientswas performed. Patients were provided a description of the three anti-TNF agents focusingon indication, application mode (s.c. vs. i.v.), application time intervals, setting of application(hospital vs. private practice vs. patient's home), average time to apply the medication permonth, typical side effects, and the scientific evidence of efficacy and safety available for everydrug. Patients answered a questionnaire consisting of 17 questions, covering demographic,disease-specific, and medication data.Results: Hundred patients (47f/53m, mean age 45±16years) completed the questionnaire. Disease duration was <1year in 7%, 1-5 years in 31%,and >5 years in 62% of patients. Disease location was ileal in 33%, colonic in 40%, andileocolonic in 27%. Disease phenotype was inflammatory in 68%, stenosing in 29%, andinternally fistulizing in 3% of patients. Additionally, 20% had perianal fistulizing disease.Patients were already treated with the following drugs: mesalamines 61%, budesonide 44%,prednisone 97%, thiopurines 78%, methotrexate 16%. In total, 30% had already heardabout IFX, 20% about ADA, and 11% about CZP. Thirty-six percent voted for treatmentwith ADA, 28% for CZP, and 25% for IFX, whereas 11% were undecided. The followingfactors influenced the patient's decision for choosing a specific anti-TNF drug (severalanswers possible): side effects 76%, physician's recommendation 66%, application mode54%, efficacy experience 52%, time to spend for therapy 27%, patient's recommendations21%, interactions with other medications 12%. The single most important factor for choosinga specific anti-TNF was (1 answer): side effect profile 35%, physician's recommendation22%, efficacy experience 21%, application mode 13%, patient's recommendations 5%, timespent for therapy 3%, interaction with other medications 1%.Conclusions: The majority ofpatients preferred anti-TNF syringes to infusions. The safety profile of the drugs and thephysician's recommendation are major factors influencing the patient's choice for a specificanti-TNF drug. Patient's issues about safety and lifestyle habits should be taken into accountwhen prescribing specific anti-TNF formulations.
Resumo:
Transcriptional activity relies on coregulators that modify the chromatin structure and serve as bridging factors between transcription factors and the basal transcription machinery. Using the DE domain of human peroxisome proliferator-activated receptor gamma (PPARgamma) as bait in a yeast two-hybrid screen of a human adipose tissue library, we isolated the scaffold attachment factor B1 (SAFB1/HET/HAP), which was previously shown to be a corepressor of estrogen receptor alpha. We show here that SAFB1 has a very broad tissue expression profile in human and is also expressed all along mouse embryogenesis. SAFB1 interacts in pull-down assays not only with PPARgamma but also with all nuclear receptors tested so far, albeit with different affinities. The association of SAFB1 and PPARgamma in vivo is further demonstrated by fluorescence resonance energy transfer (FRET) experiments in living cells. We finally show that SAFB1 is a rather general corepressor for nuclear receptors. Its change in expression during the early phases of adipocyte and enterocyte differentiation suggests that SAFB1 potentially influences cell proliferation and differentiation decisions.
Resumo:
Members of the viral Flice/caspase-8 inhibitory protein (v-FLIP) family prevent induction of apoptosis by death receptors through inhibition of the processing and activation of procaspase-8 and -10 at the level of the receptor-associated death-inducing signaling complex (DISC). Here, we have addressed the molecular function of the v-FLIP member MC159 of the human molluscum contagiosum virus. MC159 FLIP powerfully inhibited both caspase-dependent and caspase-independent cell death induced by Fas. The C-terminal region of MC159 bound TNF receptor-associated factor (TRAF)3, was necessary for optimal TRAF2 binding, and mediated the recruitment of both TRAFs into the Fas DISC. TRAF-binding-deficient mutants of MC159 showed impaired inhibition of FasL-induced caspase-8 processing and Fas internalization, and had reduced antiapoptotic activity. Our findings provide evidence that a MC159/TRAF2/TRAF3 complex regulates a new aspect of Fas signaling, and identify MC159 FLIP as a molecule that targets multiple features of Fas-induced cell death.