218 resultados para SYNCHROTRON RADIATION SOURCES
Resumo:
OBJECTIVE: To identify and quantify sources of variability in scores on the speech, spatial, and qualities of hearing scale (SSQ) and its short forms among normal-hearing and hearing-impaired subjects using a French-language version of the SSQ. DESIGN: Multi-regression analyses of SSQ scores were performed using age, gender, years of education, hearing loss, and hearing-loss asymmetry as predictors. Similar analyses were performed for each subscale (Speech, Spatial, and Qualities), for several SSQ short forms, and for differences in subscale scores. STUDY SAMPLE: One hundred normal-hearing subjects (NHS) and 230 hearing-impaired subjects (HIS). RESULTS: Hearing loss in the better ear and hearing-loss asymmetry were the two main predictors of scores on the overall SSQ, the three main subscales, and the SSQ short forms. The greatest difference between the NHS and HIS was observed for the Speech subscale, and the NHS showed scores well below the maximum of 10. An age effect was observed mostly on the Speech subscale items, and the number of years of education had a significant influence on several Spatial and Qualities subscale items. CONCLUSION: Strong similarities between SSQ scores obtained across different populations and languages, and between SSQ and short forms, underline their potential international use.
Resumo:
Computed tomography (CT) is a modality of choice for the study of the musculoskeletal system for various indications including the study of bone, calcifications, internal derangements of joints (with CT arthrography), as well as periprosthetic complications. However, CT remains intrinsically limited by the fact that it exposes patients to ionizing radiation. Scanning protocols need to be optimized to achieve diagnostic image quality at the lowest radiation dose possible. In this optimization process, the radiologist needs to be familiar with the parameters used to quantify radiation dose and image quality. CT imaging of the musculoskeletal system has certain specificities including the focus on high-contrast objects (i.e., in CT of bone or CT arthrography). These characteristics need to be taken into account when defining a strategy to optimize dose and when choosing the best combination of scanning parameters. In the first part of this review, we present the parameters used for the evaluation and quantification of radiation dose and image quality. In the second part, we discuss different strategies to optimize radiation dose and image quality at CT, with a focus on the musculoskeletal system and the use of novel iterative reconstruction techniques.
Resumo:
In radionuclide metrology, Monte Carlo (MC) simulation is widely used to compute parameters associated with primary measurements or calibration factors. Although MC methods are used to estimate uncertainties, the uncertainty associated with radiation transport in MC calculations is usually difficult to estimate. Counting statistics is the most obvious component of MC uncertainty and has to be checked carefully, particularly when variance reduction is used. However, in most cases fluctuations associated with counting statistics can be reduced using sufficient computing power. Cross-section data have intrinsic uncertainties that induce correlations when apparently independent codes are compared. Their effect on the uncertainty of the estimated parameter is difficult to determine and varies widely from case to case. Finally, the most significant uncertainty component for radionuclide applications is usually that associated with the detector geometry. Recent 2D and 3D x-ray imaging tools may be utilized, but comparison with experimental data as well as adjustments of parameters are usually inevitable.
Resumo:
Computed tomography (CT) is a modality of choice for the study of the musculoskeletal system for various indications including the study of bone, calcifications, internal derangements of joints (with CT arthrography), as well as periprosthetic complications. However, CT remains intrinsically limited by the fact that it exposes patients to ionizing radiation. Scanning protocols need to be optimized to achieve diagnostic image quality at the lowest radiation dose possible. In this optimization process, the radiologist needs to be familiar with the parameters used to quantify radiation dose and image quality. CT imaging of the musculoskeletal system has certain specificities including the focus on high-contrast objects (i.e., in CT of bone or CT arthrography). These characteristics need to be taken into account when defining a strategy to optimize dose and when choosing the best combination of scanning parameters. In the first part of this review, we present the parameters used for the evaluation and quantification of radiation dose and image quality. In the second part, we discuss different strategies to optimize radiation dose and image quality of CT, with a focus on the musculoskeletal system and the use of novel iterative reconstruction techniques.
Resumo:
(ENGLISH VERSION BELOW) En 1780, le médecin Jean-André Venel fonde à Orbe, dans le canton de Vaud, le premier institut orthopédique connu dans le monde, proposant une version clinique d'un savoir-faire médical ancestral. A travers des sources qui réactualisent les travaux consacrés à Venel, cet article retrace les origines de son institution et de sa pensée médicale, dans un contexte de production et de diffusion d'un savoir particulier en termes de technique du corps et de médecine de l'enfant. Revisitant la figure légendaire - ou mythique ? - de ce que l'histoire de la médecine a retenu comme étant le « père de l'orthopédie », l'article s'interroge par la même occasion sur les conditions d'émergence d'une spécialité médicale au sortir de l'Ancien Régime, et de son impact dans les premières décennies du XIXe siècle. In 1780, the physician Jean-André Venel creates in Orbe (canton of Vaud) the first orthopedic institute of the world, offering a clinical version of an ancient medical savoir-faire. By using sources that enable us to update the scholarship on Venel, this article traces the origins of his institute and of his medical thought, in the context of the production and diffusion of a specialized knowledge on the body and on children. With this new perspective on the legendary, if not mythical, figure, whom the history of medicine has canonized as the "father of orthopedia", this article also examines the conditions of emergence of a medical specialization at the end of the Ancien Régime and its impact in the first decades of the nineteenth century.
Resumo:
Given their central role in mercury (Hg) excretion and suitability as reservoirs, bird feathers are useful Hg biomonitors. Nevertheless, the interpretation of Hg concentrations is still questioned as a result of a poor knowledge of feather physiology and mechanisms affecting Hg deposition. Given the constraints of feather availability to ecotoxicological studies, we tested the effect of intra-individual differences in Hg concentrations according to feather type (body vs. flight feathers), position in the wing and size (mass and length) in order to understand how these factors could affect Hg estimates. We measured Hg concentration of 154 feathers from 28 un-moulted barn owls (Tyto alba), collected dead on roadsides. Median Hg concentration was 0.45 (0.076-4.5) mg kg(-1) in body feathers, 0.44 (0.040-4.9) mg kg(-1) in primary and 0.60 (0.042-4.7) mg kg(-1) in secondary feathers, and we found a poor effect of feather type on intra-individual Hg levels. We also found a negative effect of wing feather mass on Hg concentration but not of feather length and of its position in the wing. We hypothesize that differences in feather growth rate may be the main driver of between-feather differences in Hg concentrations, which can have implications in the interpretation of Hg concentrations in feathers. Finally, we recommend that, whenever possible, several feathers from the same individual should be analysed. The five innermost primaries have lowest mean deviations to both between-feather and intra-individual mean Hg concentration and thus should be selected under restrictive sampling scenarios.
Resumo:
Determining the appropriate level of integration is crucial to realizing value from acquisitions. Most prior research assumes that higher integration implies the removal of autonomy from target managers, which in turn undermines the functioning of the target firm if it entails unfamiliar elements for the acquirer. Using a survey of 86 acquisitions to obtain the richness of detail necessary to distinguish integration from autonomy, the authors argue and find that integration and autonomy are not the opposite ends of a single continuum. Certain conditions (e.g., when complementarity rather than similarity is the primary source of synergy) lead to high levels of both integration and autonomy. In addition, similarity negatively moderates the relationship between complementarity and autonomy when the target offers both synergy sources. In contrast, similarity does not moderate the link between complementarity and integration. The authors' findings advance scholarly understanding about the drivers of implementation strategy and in particular the different implementation strategies acquiring managers deploy when they attempt to leverage complementarities, similarities, or both.