213 resultados para SELF-INJURY
Resumo:
We conducted a preliminary, questionnaire-based, retrospective analysis of training and injury in British National Squad Olympic distance (OD) and Ironman distance (IR) triathletes. The main outcome measures were training duration and training frequency and injury frequency and severity. The number of overuse injuries sustained over a 5-year period did not differ between OD and IR. However, the proportions of OD and IR athletes who were affected by injury to particular anatomical sites differed (p < 0.05). Also, fewer OD athletes (16.7 vs. 36.8%, p < 0.05) reported that their injury recurred. Although OD sustained fewer running injuries than IR (1.6 +/- 0.5 vs. 1.9 +/- 0.3, p < 0.05), more subsequently stopped running (41.7 vs. 15.8%) and for longer (33.5 +/- 43.0 vs. 16.7 +/- 16.6 days, p < 0.01). In OD, the number of overuse injuries sustained inversely correlated with percentage training time, and number of sessions, doing bike hill repetitions (r = -0.44 and -0.39, respectively, both p < 0.05). The IR overuse injury number correlated with the amount of intensive sessions done (r = 0.67, p < 0.01 and r = 0.56, p < 0.05 for duration of "speed run" and "speed bike" sessions). Coaches should note that training differences between triathletes who specialize in OD or IR competition may lead to their exhibiting differential risk for injury to specific anatomical sites. It is also important to note that cycle and run training may have a "cumulative stress" influence on injury risk. Therefore, the tendency of some triathletes to modify rather than stop training when injured-usually by increasing load in another discipline from that in which the injury first occurred-may increase both their risk of injury recurrence and time to full rehabilitation.
Resumo:
OBJECTIVE: Most studies on alcohol as a risk factor for injuries have been mechanism specific, and few have considered several mechanisms simultaneously or reported alcohol-attributable fractions (AAFs)-which was the aim of the current study. METHOD: Data from 3,592 injured and 3,489 noninjured patients collected between January 2003 and June 2004 in the surgical ward of the emergency department of the Lausanne University Hospital (Switzerland) were analyzed. Four injury mechanisms derived from the International Classification of Diseases, 10th Revision, were considered: transportation-related injuries, falls, exposure to forces and other events, and interpersonal violence. Multinomial logistic regression models were calculated to estimate the risk relationships of different levels of alcohol consumption, using noninjured patients as quasi-controls. The AAFs were then calculated. RESULTS: Risk relationships between injury and acute consumption were found across all mechanisms, commonly resulting in dose-response relationships. Marked differences between mechanisms were observed for relative risks and AAFs, which varied between 15.2% and 33.1% and between 10.1% and 35.9%, depending on the time window of consumption (either 6 hours or 24 hours before injury, respectively). Low and medium levels of alcohol consumption generally were associated with the most AAFs. CONCLUSIONS: This study underscores the implications of even low levels of alcohol consumption on the risk of sustaining injuries through any of the mechanisms considered. Substantial AAFs are reported for each mechanism, particularly for injuries resulting from interpersonal violence. Observation of a so-called preventive paradox phenomenon is discussed, and prevention or intervention measures are described.
Resumo:
Inflammatory mechanisms are known to contribute to the pathophysiology of traumatic brain injury (TBI). Since bradykinin is one of the first mediators activated during inflammation, we investigated the role of bradykinin and its receptors in posttraumatic secondary brain damage. We subjected wild-type (WT), B(1)-, and B(2)-receptor-knockout mice to controlled cortical impact (CCI) and analyzed tissue bradykinin as well as kinin receptor mRNA and protein expression up to 48 h thereafter. Brain edema, contusion volume, and functional outcome were assessed 24 h and 7 days after CCI. Tissue bradykinin was maximally increased 2 h after trauma (P<0.01 versus sham). Kinin B(1) receptor mRNA was upregulated up to four-fold 24 h after CCI. Immunohistochemistry showed that B(1) and B(2) receptors were expressed in the brain and were significantly upregulated in the traumatic penumbra 1 to 24 h after CCI. B(2)R(-/-) mice had significantly less brain edema (-51% versus WT, 24 h; P<0.001), smaller contusion volumes ( approximately 50% versus WT 24 h and 7 d after CCI; P<0.05), and better functional outcome 7 days after TBI as compared with WT mice (P<0.05). The present results show that bradykinin and its B(2) receptors play a causal role for brain edema formation and cell death after TBI.