241 resultados para Proto-oncogene
Resumo:
Adenocarcinoma of the lung is the leading cause of cancer death worldwide. Here we report molecular profiling of 230 resected lung adenocarcinomas using messenger RNA, microRNA and DNA sequencing integrated with copy number, methylation and proteomic analyses. High rates of somatic mutation were seen (mean 8.9 mutations per megabase). Eighteen genes were statistically significantly mutated, including RIT1 activating mutations and newly described loss-of-function MGA mutations which are mutually exclusive with focal MYC amplification. EGFR mutations were more frequent in female patients, whereas mutations in RBM10 were more common in males. Aberrations in NF1, MET, ERBB2 and RIT1 occurred in 13% of cases and were enriched in samples otherwise lacking an activated oncogene, suggesting a driver role for these events in certain tumours. DNA and mRNA sequence from the same tumour highlighted splicing alterations driven by somatic genomic changes, including exon 14 skipping in MET mRNA in 4% of cases. MAPK and PI(3)K pathway activity, when measured at the protein level, was explained by known mutations in only a fraction of cases, suggesting additional, unexplained mechanisms of pathway activation. These data establish a foundation for classification and further investigations of lung adenocarcinoma molecular pathogenesis.
Resumo:
Abstract : The human body is composed of a huge number of cells acting together in a concerted manner. The current understanding is that proteins perform most of the necessary activities in keeping a cell alive. The DNA, on the other hand, stores the information on how to produce the different proteins in the genome. Regulating gene transcription is the first important step that can thus affect the life of a cell, modify its functions and its responses to the environment. Regulation is a complex operation that involves specialized proteins, the transcription factors. Transcription factors (TFs) can bind to DNA and activate the processes leading to the expression of genes into new proteins. Errors in this process may lead to diseases. In particular, some transcription factors have been associated with a lethal pathological state, commonly known as cancer, associated with uncontrolled cellular proliferation, invasiveness of healthy tissues and abnormal responses to stimuli. Understanding cancer-related regulatory programs is a difficult task, often involving several TFs interacting together and influencing each other's activity. This Thesis presents new computational methodologies to study gene regulation. In addition we present applications of our methods to the understanding of cancer-related regulatory programs. The understanding of transcriptional regulation is a major challenge. We address this difficult question combining computational approaches with large collections of heterogeneous experimental data. In detail, we design signal processing tools to recover transcription factors binding sites on the DNA from genome-wide surveys like chromatin immunoprecipitation assays on tiling arrays (ChIP-chip). We then use the localization about the binding of TFs to explain expression levels of regulated genes. In this way we identify a regulatory synergy between two TFs, the oncogene C-MYC and SP1. C-MYC and SP1 bind preferentially at promoters and when SP1 binds next to C-NIYC on the DNA, the nearby gene is strongly expressed. The association between the two TFs at promoters is reflected by the binding sites conservation across mammals, by the permissive underlying chromatin states 'it represents an important control mechanism involved in cellular proliferation, thereby involved in cancer. Secondly, we identify the characteristics of TF estrogen receptor alpha (hERa) target genes and we study the influence of hERa in regulating transcription. hERa, upon hormone estrogen signaling, binds to DNA to regulate transcription of its targets in concert with its co-factors. To overcome the scarce experimental data about the binding sites of other TFs that may interact with hERa, we conduct in silico analysis of the sequences underlying the ChIP sites using the collection of position weight matrices (PWMs) of hERa partners, TFs FOXA1 and SP1. We combine ChIP-chip and ChIP-paired-end-diTags (ChIP-pet) data about hERa binding on DNA with the sequence information to explain gene expression levels in a large collection of cancer tissue samples and also on studies about the response of cells to estrogen. We confirm that hERa binding sites are distributed anywhere on the genome. However, we distinguish between binding sites near promoters and binding sites along the transcripts. The first group shows weak binding of hERa and high occurrence of SP1 motifs, in particular near estrogen responsive genes. The second group shows strong binding of hERa and significant correlation between the number of binding sites along a gene and the strength of gene induction in presence of estrogen. Some binding sites of the second group also show presence of FOXA1, but the role of this TF still needs to be investigated. Different mechanisms have been proposed to explain hERa-mediated induction of gene expression. Our work supports the model of hERa activating gene expression from distal binding sites by interacting with promoter bound TFs, like SP1. hERa has been associated with survival rates of breast cancer patients, though explanatory models are still incomplete: this result is important to better understand how hERa can control gene expression. Thirdly, we address the difficult question of regulatory network inference. We tackle this problem analyzing time-series of biological measurements such as quantification of mRNA levels or protein concentrations. Our approach uses the well-established penalized linear regression models where we impose sparseness on the connectivity of the regulatory network. We extend this method enforcing the coherence of the regulatory dependencies: a TF must coherently behave as an activator, or a repressor on all its targets. This requirement is implemented as constraints on the signs of the regressed coefficients in the penalized linear regression model. Our approach is better at reconstructing meaningful biological networks than previous methods based on penalized regression. The method is tested on the DREAM2 challenge of reconstructing a five-genes/TFs regulatory network obtaining the best performance in the "undirected signed excitatory" category. Thus, these bioinformatics methods, which are reliable, interpretable and fast enough to cover large biological dataset, have enabled us to better understand gene regulation in humans.
Resumo:
The function of DNA-binding proteins is controlled not just by their abundance, but mainly at the level of their activity in terms of their interactions with DNA and protein targets. Moreover, the affinity of such transcription factors to their target sequences is often controlled by co-factors and/or modifications that are not easily assessed from biological samples. Here, we describe a scalable method for monitoring protein-DNA interactions on a microarray surface. This approach was designed to determine the DNA-binding activity of proteins in crude cell extracts, complementing conventional expression profiling arrays. Enzymatic labeling of DNA enables direct normalization of the protein binding to the microarray, allowing the estimation of relative binding affinities. Using DNA sequences covering a range of affinities, we show that the new microarray-based method yields binding strength estimates similar to low-throughput gel mobility-shift assays. The microarray is also of high sensitivity, as it allows the detection of a rare DNA-binding protein from breast cancer cells, the human tumor suppressor AP-2. This approach thus mediates precise and robust assessment of the activity of DNA-binding proteins and takes present DNA-binding assays to a high throughput level.
Resumo:
The discovery of exhumed continental mantle and hyper-extended crust in present-day magma-poor rifted margins is at the origin of a paradigm shift within the research field of deep-water rifted margins. It opened new questions about the strain history of rifted margins and the nature and composition of sedimentary, crustal and mantle rocks in rifted margins. Thanks to the benefit of more than one century of work in the Alps and access to world-class outcrops preserving the primary relationships between sediments and crustal and mantle rocks from the fossil Alpine Tethys margins, it is possible to link the subsidence history and syn-rift sedimentary evolution with the strain distribution observed in the crust and mantle rocks exposed in the distal rifted margins. In this paper, we will focus on the transition from early to late rifting that is associated with considerable crustal thinning and a reorganization of the rift system. Crustal thinning is at the origin of a major change in the style of deformation from high-angle to low-angle normal faulting which controls basin-architecture, sedimentary sources and processes and the nature of basement rocks exhumed along the detachment faults in the distal margin. Stratigraphic and isotopic ages indicate that this major change occurred in late Sinemurian time, involving a shift of the syn-rift sedimentation toward the distal domain associated with a major reorganization of the crustal structure with exhumation of lower and middle crust. These changes may be triggered by mantle processes, as indicated by the infiltration of MOR-type magmas in the lithospheric mantle, and the uplift of the Brianconnais domain. Thinning and exhumation of the crust and lithosphere also resulted in the creation of new paleogeographic domains, the Proto Valais and Liguria-Piemonte domains. These basins show a complex, 3D temporal and spatial evolution that might have evolved, at least in the case of the Liguria-Piemonte basin, in the formation of an embryonic oceanic crust. The re-interpretation of the rift evolution and the architecture of the distal rifted margins in the Alps have important implications for the understanding of rifted margins worldwide, but also for the paleogeographic reconstruction of the Alpine domain and its subsequent Alpine compressional overprint.
Resumo:
Mouse mammary tumor virus (MMTV) has developed a strategy of exploitation of the immune response. It infects dendritic cells and B cells and requires this infection to establish an efficient chronic infection. This allows transmission of infection to the mammary gland, production in milk and infection of the next generation via lactation. The elaborate strategy developed by MMTV utilizes several key elements of the normal immune response. Starting with the infection and activation of dendritic cells and B cells leading to the expression of a viral superantigen followed by professional superantigen-mediated priming of naive polyclonal T cells by dendritic cells and induction of superantigen-mediated T cell B cell collaboration results in long-lasting germinal center formation and production of long-lived B cells that can later carry the virus to the mammary gland epithelium. Later in life it can induce transformation of mammary gland epithelium by integrating close to proto-oncogenes leading to their overexpression. Genes encoding proteins of the Wnt-pathway are preferential targets. This review will put these effects in the context of a normal immune response and summarize important facts on MMTV biology.
Resumo:
AbstractAs demonstrated during several recent geological conferences, there is still a large debate concerning the origins of the Mesozoic oceanic remnants on the Caribbean Plate. The geodynamic models describing the Mesozoic history of the Caribbean realm can be divided into two main categories based on the origin of the Caribbean Plate: 1) An in situ origin between the Americas; 2) A Pacific origin and an eastward transport relative to the Americas. The study of the ribbon-bedded radiolarite is a key in determining the origins of associated Mesozoic oceanic terranes and may help to achieve a general agreement regarding the basic principles on the evolution of the Caribbean Plate. The Early Jurassic to early Late Cretaceous Bermeja Complex of Puerto Rico, witch contains serpentinized peridotite, altered basalt, amphibolite, and chert (Mariquita Chert Formation), and the contemporaneous Santa Rosa Accretionary Complex, which crops out in several half-windows along the south shores of the Santa Elena Peninsula in northwestern Costa Rica, are two of these little-known and crucial ophiolitic mélanges. The Manzanillo and Matambú fore-arc Terranes of the Nicoya Peninsula in the northwestern Costa Rica, which contain Late Cretaceous to Early Paleogene radiolarian-bearing siliceous mudstones and cherts associated with arc-derived mafic to intermediate volcaniclastics, bring important information on the history of the western active margin of the Caribbean Plate. A systematic radiolarian study of these three regions is presented herein in three different articles.The radiolarian biochronology of the Mariquita Chert Formation of the Bermeja Complex presented in this work indicate an early Middle Jurassic to early Late Cretaceous (late Bajocian-early Callovian to middle Albian-middle Cenomanian) age for the Mariquita Chert Formation. The illustrated assemblages contain 150 species, of which 3 are new (Pantanellium karinae, Loopus bermejaense, and L. boricus), and belonging to 59 genera. A review of the previous radiolarian published works on this formation and the results of this study suggest that the Bermeja Complex ranges in age from Middle Jurassic to early Late Cretaceous (late Aalenian to middle Cenomanian) and also reveal a possible feature of the complex, which is the youngling of radiolarian cherts from north to south, evoking a polarity of accretion. On the basis of a currently exhaustive inventory of the ribbonbedded radiolaritic facies on the Caribbean Plate, a re-examination of the distribution of Middle Jurassic sediments associated with oceanic crust from the Caribbean realm, and a paleoceanographical argumentation on the water currents, we come to the conclusion that the radiolarite and associated Mesozoic oceanic terranes of the Caribbean Plate are of Pacific origin. The previous argument for a Pacific origin of the Bermeja Complex presented by Montgomery et al. (1994a), based on their radiolarian age and their estimation of the oldest Proto-Caribbean oceanic crust, is nowadays seriously questionable, owing to the recent progresses in radiolarian biostratigraphy and new discoveries on the age of the first oceanic crust spreading between the Americas. Furthermore, we interpret the radiolarian Parvicingulidae-rich assemblages in the low-latitude Caribbean context as potential indicators of upwelling or land nutrients inputs, instead of indicators of paleolatitudes,as firstly stated by Pessagno and Blome (1986). Eventually, a discussion on the origin of the cherts of the Mariquita Formation illustrated by Middle Jurassic to middle Cretaceous geodynamic models of the Pacific and Caribbean realms bring up the possibility that the rocks of the Bermeja Complex are remnants of two different oceans.The Santa Rosa Accretionary Complex contains various oceanic assemblages of alkaline basalt, radiolarite and polymictic breccias. The radiolarian biochronology (19 illustrated assemblages, 232 species belonging to 63 genera) presented in this work indicate an Early Jurassic to early Late Cretaceous (early Pliensbachian to earliest Turonian) age for the sediments associated with oceanic basalts or recovered from blocks in breccias or megabreccias from the Santa Rosa Accretionary Complex. This study brings to light the Early Jurassic age of a sequence of ribbon-bedded radiolarite, which was previously thought to be of Cretaceous age, intruded by alkaline basalts sills. The presence of Early Jurassic large reworked blocks of radiolarite in a polymictic megabreccia, firstly reported by De Wever et al. (1985) is confirmed. Therefore, the alkaline basalt associated with these radiolarites could be of Jurassic age. In the Carrizal tectonic window, Middle Jurassic radiolarian chert blocks and Early Cretaceous brick-red ribbon-bedded radiolarites overlying pillow basalts are interpreted as fragments of a Middle Jurassic oceanic basement accreted to an Early Cretaceous oceanic plate, in an intra-oceanic subduction context. Whereas, knobby radiolarites and black shale at Playa Carrizal are indicative of a shallower middle Cretaceous paleoenvironment. Other younger oceanic remnants documented the rapid approach of the site of sedimentation to a subduction trench during the late Early Cretaceous (AlbianCenomanian), maybe early Late Cretaceous (Turonian).In total, 60 species belonging to 34 genera were present in relatively well-preserved radiolarian faunas from volcaniclastics and associated pelagic and hemipelagic rocks of the Matambú and Manzanillo terranes, ranging in age from Late Cretaceous to Early Paleogene (middle Turonian-Santonian to late Thanetian-Ypresian). This study shows that radiolarians can provide significant biostratigraphic control in the Nicoya Peninsula where very similar lithologies of different ages are present. Two radiolarian samples directly date the Berrugate Formation for the first time (middle Turonian-Santonian and Coniacian-Santonian). These ages allow to determine a volcanic arc activity on the western edge of the future Caribbean Plate at least since the Santonian that could have lasted through the middle Turonian-early Campanian interval by stratigraphic superposition. Moreover on the basis of these radiolarian ages, the Loma Chumico Formation of Albian age, and the Berrugate Formation of middle Turonian-early Maastrichtian age, can now be clearly differentiated. Two samples from the Sabana Grande Formation give a Coniacian-Santonian age and a Coniacian-Campanian age and indicate that there is a stratigraphic gap of ~10 million years between this formation and the underlying Albian Loma Chumico Formation.RésuméComme cela a pu se vérifier à plusieurs reprises lors de conférences géologiques récentes, le débat sur l'origine des terrains océaniques mésozoïques de la Plaque Caraïbes est toujours d'actualité. Les modèles géodynamiques décrivant l'histoire de la région caraïbes peuvent être classés en deux catégories basées sur l'origine de la Plaque Caraïbes : 1) Une origine in situ entre les Amériques ; 2) Une origine Pacifique et un transport vers l'est, par rapport aux Amériques. L'étude des radiolarites rubanées est capitale pour la détermination de l'origine des terrains océaniques allochtones du Mésozoïque et peut être utile pour parvenir à un compromis général concernant les principes basiques de l'évolution de la Plaque Caraïbes. Le complexe de Bermeja à Porto Rico qui est constitué de péridotites serpentinisées, de basaltes altérés, d'amphibolites et de cherts (Formation des Cherts de Mariquita), et le Complexe d'Accrétion de Santa Rosa qui affleure dans plusieurs demi-fenêtres tectoniques au sud de la Péninsule de Santa Elena au nord-ouest du Costa Rica sont deux de ces mélanges ophiolitiques peu décrits et déterminants. Les terrains de fore-arc de Manzanillo et de Matambu dans la Péninsule de Nicoya au nord-ouest du Costa Rica qui sont composés de calcaires siliceux et de cherts riches en radiolaires associés à du matériel volcanique d'arc mafique à intermédiaire, apportent d'importantes informations sur l'histoire de la marge active occidentale de la Plaque Caraïbe. Une étude systématique des radiolaires de ces trois régions est présentée dans ce travail sous forme de trois articles.La biochronologie des radiolaires de la Formation des Cherts de Mariquita du Complexe d'Accrétion de Santa Rosa présentée dans ce travail indique un âge Jurassique Moyen inférieur à Crétacé Supérieur inférieur (Bajocien supérieur-Callovien inférieur à Albien moyen-Cénomanien moyen) pour la Formation des Cherts de Mariquita. Les assemblages illustrés contiennent 150 espèces, parmis lesquelles 3 sont nouvelles (Pantanellium karinae, Loopus bermejaense et L. boricus), et appartenant à 59 genres différents. Une révision des travaux publiés précédemment sur les radiolaires de cette formation, ainsi que les résultats de cette étude suggèrent que le Complexe de Bermeja a un âge allant du Jurassique moyen au Crétacé Supérieur inférieur (Aalénien supérieur à Cénomanien moyen) et révèle aussi une caractéristique éventuelle du complexe qui est le rajeunissement des radiolarites du nord au sud, évoquant une polarité d'accrétion. Sur la base d'un inventaire actuellement exhaustif du facies radiolaritique rubané sur la Plaque Caraïbes, d'un nouvel examen de la distribution globale des sédiments du Jurassique Moyen associés à de la croûte océanique et d'une argumentation paléocéanographique sur les courants, nous arrivons à la conclusion que les radiolarites et les unités tectoniques océaniques du Mésozoïque associées de la Plaque Caraïbes sont d'origine pacifique. L'argument antérieur pour une origine pacifique du Complexe de Bermeja présenté par Montgomery et al. (1994a), basé sur leur âge à radiolaire et leur estimation de l'âge de la plus vieille croûte océanique des Proto-Caraïbes, est sérieusement remis en question aujourd'hui, en raison des progrès récents de la biostratigraphie des radiolaires et des nouvelles découvertes concernant l'âge du début de l'océanisation entre les Amériques. En outre, dans le contexte de basses latitudes des Caraïbes, nous interprétons les assemblages à radiolaires riches en Parvicingulidae comme étant des indicateurs potentiels d'apports en nutriments des zones d'uppwelling ou des terres, plutôt que des indicateurs de paléolatitudes, comme exposer pour la première fois par Pessagno et Blome (1986). Finalement, une discussion sur l'origine des cherts de la Formation de Mariquita illustrée par des modèles géodynamiques du Jurassique Moyen au Crétacé moyen des régions pacifique et caraïbes, fait poindre la possibilité que les roches du Complexe de Bermeja proviennent de deux océans différents.Le Complexe d'Accrétion de Santa Rosa contient plusieurs assemblages océaniques différents de basaltes alcalins, radiolarites et brèches polymictes. La biochronologie des radiolaires (19 assemblages illustrés, 232 espèces appartenant à 63 genres) présentée dans ce second travail indique un âge Jurassique Inférieur à Crétacé Supérieur inférieur (Pliensbachien inférieur à Turonien initial) pour les sédiments associés aux basaltes océaniques ou provenant de blocs dans des brèches ou des mégabrèches du Complexe d'Accrétion de Santa Rosa. Cette étude met en évidence l'âge Jurassique Inférieur d'une séquence de radiolarites rubanées entrecoupée de sills de basaltes alcalins, dont l'âge estimé était précédemment le Crétacé.La présence de blocs plurimétriques de radiolarites d'âge Jurassique Inférieur remaniés dans une mégabrèche polymicte, dont la présence avait été signalée par De Wever et al. (1985), est confirmée. Par conséquent, les basaltes alcalins associés à ces radiolarites pourraient aussi être d'âge Jurassique. Dans la fenêtre tectonique de Carrizal, des blocs de radiolarites d'âge Jurassique Moyen et des radiolarites du Crétacé Inférieur recouvrant des basaltes en coussins sont interprétés comme des fragments d'une croûte océanique d'âge Jurassique Moyen accrétés à une plaque océanique d'âge Crétacé Inférieur, dans un contexte de subduction intra-océanique. Alors que dans la même zone, les radiolarites « noueuses » et les argiles noires associées sont interprétées comme des indicateurs d'un milieu peu profond au Crétacé. D'autres fragments océaniques plus jeunes documentent une approche rapide du lieu de sédimentation vers une fosse de subduction pendant le Crétacé Inférieur supérieur (Albien-Cénomanien), peut-être Crétacé Supérieur (Turonien).Au total, 60 espèces appartenant à 34 genres ont été déterminées à partir de faunes à radiolaires relativement bien préservées, extraites de roches volcanoclastiques et pélagiques à hémipélagiques associées, provenant des terrains de Matambu et Manzanillo et ayant des âges compris entre le Crétacé Supérieur et le Paléogène Inférieur (Turonien moyen-Santonien à Thanétien supérieur-Yprésien). Cette étude montre que les radiolaires peuvent fournir un contrôle stratigraphique significatif dans la Péninsule de Nicoya, où des lithologies similaires, mais d'âges différents sont présentes. Deux échantillons à radiolaires permettent de dater la Formation de Berrugate pour la première fois (Turonien moyen-Santonien et Coniacien-Santonien). Ces âges permettent d'établir une activité volcanique d'arc le long de la marge occidentale de la futur Plaque Caraïbes au moins depuis le Santonien et qui pourrait avoir durée jusqu'au Turonien moyen-Campanien inférieur. De plus, sur la base de ces âges à radiolaires, la Formation de Loma Chumico d'âge Albien, et la Formation de Berrugate d'âge Turonien moyen-Maastrichtien inférieur, peuvent maintenant être différenciées. Deux échantillons de la Formation de Sabana Grande donnent des âges Coniacien-Santonien et Coniacien-Campanien et indiquent qu'il existe une lacune stratigraphique d'environ 10 millions d'années entre cette formation et la Formation de Loma Chumico sous-jacente d'âge Albien.
Resumo:
Lung cancer is characterized by the highest incidence of solid tumor-related brain metastases, which are reported with a growing incidence during the last decade. Prognostic assessment may help to identify subgroups of patients that could benefit from more aggressive therapy of metastatic disease, in particular when central nervous system is involved. The recent sub-classification of non-small cell lung cancer (NSCLC) into molecularly-defined "oncogene-addicted" tumors, the emergence of effective targeted treatments in molecularly defined patient subsets, global improvement of advanced NSCLC survival as well as the availability of refined new radiotherapy techniques are likely to impact on outcomes of patients with brain dissemination. The present review focuses on key evidence and research strategies for systemic treatment of patients with central nervous system involvement in non-small cell lung cancer.
Resumo:
The corpus callosum (CC) is the major commissure that bridges the cerebral hemispheres. Agenesis of the CC is associated with human ciliopathies, but the origin of this default is unclear. Regulatory Factor X3 (RFX3) is a transcription factor involved in the control of ciliogenesis, and Rfx3-deficient mice show several hallmarks of ciliopathies including left-right asymmetry defects and hydrocephalus. Here we show that Rfx3-deficient mice suffer from CC agenesis associated with a marked disorganisation of guidepost neurons required for axon pathfinding across the midline. Using transplantation assays, we demonstrate that abnormalities of the mutant midline region are primarily responsible for the CC malformation. Conditional genetic inactivation shows that RFX3 is not required in guidepost cells for proper CC formation, but is required before E12.5 for proper patterning of the cortical septal boundary and hence accurate distribution of guidepost neurons at later stages. We observe focused but consistent ectopic expression of Fibroblast growth factor 8 (Fgf8) at the rostro commissural plate associated with a reduced ratio of GLIoma-associated oncogene family zinc finger 3 (GLI3) repressor to activator forms. We demonstrate on brain explant cultures that ectopic FGF8 reproduces the guidepost neuronal defects observed in Rfx3 mutants. This study unravels a crucial role of RFX3 during early brain development by indirectly regulating GLI3 activity, which leads to FGF8 upregulation and ultimately to disturbed distribution of guidepost neurons required for CC morphogenesis. Hence, the RFX3 mutant mouse model brings novel understandings of the mechanisms that underlie CC agenesis in ciliopathies.
Resumo:
Gene transfer-based therapeutic approaches have greatly benefited from the ability of some viral vectors to efficiently integrate within the cell genome and ensure persistent transmission of newly acquired transgenes to the target cell progeny. However, integration of provirus has been associated with epigenetic repercussions that may influence the expression of both the transgene and cellular genes close to vector integration loci. The exploitation of genetic insulator elements may overcome both issues through their ability to act as barriers that limit transgene silencing and/or as enhancer-blockers preventing the activation of endogenous genes by the vector enhancer. We established quantitative plasmid-based assay systems to screen enhancer-blocker and barrier genetic elements. Short synthetic insulators that bind to nuclear factor-I protein family transcription factors were identified to exert both enhancer-blocker and barrier functions, and were compared to binding sites for the insulator protein CTCF (CCCTC-binding factor). Gamma-retroviral vectors enclosing these insulator elements were produced at titers similar to their non-insulated counterparts and proved to be less genotoxic in an in vitro immortalization assay, yielding lower activation of Evi1 oncogene expression and reduced clonal expansion of bone marrow cells.
Resumo:
The CD44 adhesion receptor is silenced in highly malignant neuroblastomas (NBs) with MYCN amplification. Because its functional expression is associated with decreased tumorigenic properties, CD44 behaves as a tumor suppressor gene in NB and other cancers. Given that the precise mechanisms responsible for CD44 silencing are not elucidated, we investigated whether CD44 expression could be regulated by DNA hypermethylation. The methylation status of CD44 gene promoter and exon 1 regions was analyzed in 12 NB cell lines and 21 clinical samples after bisulfite genomic modification, followed by PCR and single-strand conformation polymorphism analysis and genomic sequencing. The results showed that almost all CD44-negative cell lines displayed hypermethylation in both regions, whereas all CD44-expressing cell lines were unmethylated. These observations correlated with the ability to restore CD44 mRNA and protein expression by treatment of CD44-negative cells with the 5-aza-2'-deoxycytidine demethylating agent. In contrast, no CD44 gene hypermethylation could be detected in 21 NB clinical samples of different stages, irrespective of CD44 expression. Although our results suggest that aberrant methylation of promoter and exon 1 regions is involved in CD44 silencing in NB cell lines, they also indicate that methylation of unidentified regulatory sequences or methylation-independent mechanisms also control the expression of CD44 in primary NB tumors and cell lines. We therefore conclude that CD44 silencing is controlled by complex and tumor cell-specific processes, including gene hypermethylation. Further investigation of other mechanisms and genes involved in CD44 regulation will be needed before demethylation-mediated reactivation of the CD44 gene can be considered as therapeutic strategy for neuroblastoma and perhaps other related cancers.
Resumo:
The incomplete Evros ophiolites in NE Greece form a NE-SW-oriented discontinuous belt in the Alpine orogen of the north Aegean. Field data, petrology and geochemistry are presented here for the intrusive section and associated mafic dykes of these ophiolites. Bodies of high-level isotropic gabbro and plagiogranite in the ophiolite suite are cross-cut by NE-SW-trending boninitic and tholeiitic-boninitic affinity dykes, respectively. The dykes fill tensile fractures or faults, which implies dyke emplacement in an extensional tectonic regime. The tholeiitic-transitional boninitic gabbro is REE- and HFS-depleted relative to N-MORB, indicating derivation from melting of a refractory mantle peridotite source. Associated boninitic dykes are slightly LREE-enriched, showing mineral and whole-rock geochemistry similar to the gabbro. The plagiogranite is a strongly REE-enriched high-silica trondhjemite, with textures and composition typical for an oceanic crust differentiate. Plagiogranite-hosted tholeiitic and transitional boninitic dykes are variably REE-enriched. Geochemical modelling indicates origin of the plagiogranite by up to 75% fractional crystallization of basaltic magma similar to that producing the associated tholeiitic dykes. All mafic rocks have high LILE/HFSE ratios and negative Ta-Nb-Ti and Ce anomalies, typical for subduction zone-related settings. The mafic rocks show a similar trace-element character to the mafic lavas of an extrusive section in Bulgaria, suggesting they both form genetically related intrusive and extrusive suites of the Evros ophiolites. The field occurrence, the structural context, the petrology and geochemical signature of the studied magmatic assemblage provide evidence for its origin in a proto-arc (fore-arc) tectonic setting, thus tracing the early stages of the tectono-magmatic evolution of Jurassic arc-marginal basin system that has generated the supra-subduction type Evros ophiolites.
Resumo:
Introduction: Cancer stem cells (CSC) display plasticity and self renewal properties reminiscent of normal tissue stem cells but the events responsible for their emergence remain obscure. We have recently identified CSC in Ewing sarcoma family tumors (ESFT) and shown that they arise from mesenchymal stem cells from the bone marrow. Objective of the study: To analyze the mechanisms underlying cancer stem cell development in ESFT. Methods: Primary human mesenchymal stem cells (MSC) isolation from adult and pediatric bone marrow. Retroviral delivery of fusion protein (EWS-FLI1) to primary MSC, and transcriptional and phenotypical analysis. Results: We show that the EWS-FLI-1 fusion gene, associated wit 85-90% of ESFT and believed to initiate their pathogenesis, induces expression of the embryonic stem cell (ESC) genes OCT4, SOX2 and NANOG in human pediatric MSC (hpMSC) but not in their adult counterparts. Moreover, under appropriate culture conditions, hpMSC expressing EWS-FLI-1 generate a cell subpopulation displaying ESFT CSC features in vitro. We further demonstrate that induction of the ESFT CSC phenotype is the result of the combined effect of EWSFLI- 1 on its target gene expression and repression of microRNA-145 (miRNA145) promoter activity. Finally, we provide evidence that EWS-FLI-1 and miRNA-145 function in a mutually repressive feedback loop and identify their common target gene SOX2, in addition to miRNA145 itself, as key players in ESFT cell differentiation and tumorigenicity. Conclusion: Our observations provide insight for the first time into the mechanisms whereby a single oncogene can reprogram primary cells to display a cancer stem cell phenotype.
Resumo:
Rhabdomyosarcomas (RMS) are the most frequent soft-tissue sarcoma in children and characteristically show features of developing skeletal muscle. The alveolar subtype is frequently associated with a PAX3-FOXO1 fusion protein that is known to contribute to the undifferentiated myogenic phenotype of RMS cells. Histone methylation of lysine residues controls developmental processes in both normal and malignant cell contexts. Here we show that JARID2, which encodes a protein known to recruit various complexes with histone-methylating activity to their target genes, is significantly overexpressed in RMS with PAX3-FOXO1 compared with the fusion gene-negative RMS (t-test; P < 0.0001). Multivariate analyses showed that higher JARID2 levels are also associated with metastases at diagnosis, independent of fusion gene status and RMS subtype (n = 120; P = 0.039). JARID2 levels were altered by silencing or overexpressing PAX3-FOXO1 in RMS cell lines with and without the fusion gene, respectively. Consistent with this, we demonstrated that JARID2 is a direct transcriptional target of the PAX3-FOXO1 fusion protein. Silencing JARID2 resulted in reduced cell proliferation coupled with myogenic differentiation, including increased expression of Myogenin (MYOG) and Myosin Light Chain (MYL1) in RMS cell lines representative of both the alveolar and embryonal subtypes. Induced myogenic differentiation was associated with a decrease in JARID2 levels and this phenotype could be rescued by overexpressing JARID2. Furthermore, we that showed JARID2 binds to and alters the methylation status of histone H3 lysine 27 in the promoter regions of MYOG and MYL1 and that the interaction of JARID2 at these promoters is dependent on EED, a core component of the polycomb repressive complex 2 (PRC2). Therefore, JARID2 is a downstream effector of PAX3-FOXO1 that maintains an undifferentiated myogenic phenotype that is characteristic of RMS. JARID2 and other components of PRC2 may represent novel therapeutic targets for treating RMS patients.
Resumo:
Transforming growth factor beta (TGF-beta) and tumor necrosis factor alpha (TNF-alpha) often exhibit antagonistic actions on the regulation of various activities such as immune responses, cell growth, and gene expression. However, the molecular mechanisms involved in the mutually opposing effects of TGF-beta and TNF-alpha are unknown. Here, we report that binding sites for the transcription factor CTF/NF-I mediate antagonistic TGF-beta and TNF-alpha transcriptional regulation in NIH3T3 fibroblasts. TGF-beta induces the proline-rich transactivation domain of specific CTF/NF-I family members, such as CTF-1, whereas TNF-alpha represses both the uninduced as well as the TGF-beta-induced CTF-1 transcriptional activity. CTF-1 is thus the first transcription factor reported to be repressed by TNF-alpha. The previously identified TGF-beta-responsive domain in the proline-rich transcriptional activation sequence of CTF-1 mediates both transcriptional induction and repression by the two growth factors. Analysis of potential signal transduction intermediates does not support a role for known mediators of TNF-alpha action, such as arachidonic acid, in CTF-1 regulation. However, overexpression of oncogenic forms of the small GTPase Ras or of the Raf-1 kinase represses CTF-1 transcriptional activity, as does TNF-alpha. Furthermore, TNF-alpha is unable to repress CTF-1 activity in NIH3T3 cells overexpressing ras or raf, suggesting that TNF-alpha regulates CTF-1 by a Ras-Raf kinase-dependent pathway. Mutagenesis studies demonstrated that the CTF-1 TGF-beta-responsive domain is not the primary target of regulatory phosphorylations. Interestingly, however, the domain mediating TGF-beta and TNF-alpha antagonistic regulation overlapped precisely the previously identified histone H3 interaction domain of CTF-1. These results identify CTF-1 as a molecular target of mutually antagonistic TGF-beta and TNF-alpha regulation, and they further suggest a molecular mechanism for the opposing effects of these growth factors on gene expression.
Resumo:
Pharmacologic agents that target protein products of oncogenes in tumors are playing an increasing clinical role in the treatment of cancer. Currently, the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) represent the standard of care for patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) harboring activating EGFR mutations. Subsequently other genetic abnormalities with "driver" characteristics - implying transforming and tumor maintenance capabilities have been extensively reported in several small distinct subsets of NSCLC. Among these rare genetic changes, anaplastic lymphoma kinase (ALK) gene rearrangements, most often consisting in a chromosome 2 inversion leading to a fusion with the echinoderm microtubule-associated protein like 4 (EML4) gene, results in the abnormal expression and activation of this tyrosine kinase in the cytoplasm of cancer cells. This rearrangement occurs in 2-5% of NSCLC, predominantly in young (50 years or younger), never- or former-smokers with adenocarcinoma. This aberration most commonly occurs a independently of EGFR and KRAS gene mutations. A fluorescent in situ hybridization assay was approved by the US Food and Drug Administration (FDA) as the standard method for the detection of ALK gene rearrangement in clinical practice and is considered the gold standard. Crizotinib, a first-in-class dual ALK and c-MET inhibitor, has been shown to be particularly effective against ALK positive NSCLC, showing dramatic and prolonged responses with low toxicity, predominantly restricted to the gastro-intestinal and visual systems, and generally self-limiting or easily managed. However, resistance to crizotinib inevitably emerges. The molecular mechanisms of resistance are currently under investigation, as are therapeutic approaches including crizotinib-based combination therapy and novel agents such as Hsp90 inhibitors. This review aims to present the current knowledge on this fusion gene, the clinic-pathological profile of ALK rearranged NSCLC, and to review the existing literature on ALK inhibitors, focusing on their role in the treatment of NSCLC.