252 resultados para Multiple-target sputtering
Resumo:
Constitutive activation of the nuclear factor-κ B (NF-κB) pathway is a hallmark of the activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL). Recurrent mutations of NF-κB regulators that cause constitutive activity of this oncogenic pathway have been identified. However, it remains unclear how specific target genes are regulated. We identified the atypical nuclear IκB protein IκB-ζ to be upregulated in ABC compared with germinal center B-cell-like (GCB) DLBCL primary patient samples. Knockdown of IκB-ζ by RNA interference was toxic to ABC but not to GCB DLBCL cell lines. Gene expression profiling after IκB-ζ knockdown demonstrated a significant downregulation of a large number of known NF-κB target genes, indicating an essential role of IκB-ζ in regulating a specific set of NF-κB target genes. To further investigate how IκB-ζ mediates NF-κB activity, we performed immunoprecipitations and detected a physical interaction of IκB-ζ with both p50 and p52 NF-κB subunits, indicating that IκB-ζ interacts with components of both the canonical and the noncanonical NF-κB pathway in ABC DLBCL. Collectively, our data demonstrate that IκB-ζ is essential for nuclear NF-κB activity in ABC DLBCL, and thus might represent a promising molecular target for future therapies.
Resumo:
Ancient asexuals directly contradict the evolutionary theories that explain why organisms should evolve a sexual life history. The mutualistic, arbuscular mycorrhizal fungi are thought to have been asexual for approximately 400 million years. In the absence of sex, highly divergent descendants of formerly allelic nucleotide sequences are thought to evolve in a genome. In mycorrhizal fungi, where individual offspring receive hundreds of nuclei from the parent, it has been hypothesized that a population of genetically different nuclei should evolve within one individual. Here we use DNA-DNA fluorescent in situ hybridization to show that genetically different nuclei co-exist in individual arbuscular mycorrhizal fungi. We also show that the population genetics techniques used in other organisms are unsuitable for detecting recombination because the assumptions and underlying processes do not fit the fungal genomic structure shown here. Instead we used a phylogenetic approach to show that the within-individual genetic variation that occurs in arbuscular mycorrhizal fungi probably evolved through accumulation of mutations in an essentially clonal genome, with some infrequent recombination events. We conclude that mycorrhizal fungi have evolved to be multi-genomic.
Resumo:
Mouse mammary tumor virus (MMTV) infects B lymphocytes and expresses a superantigen on the cell surface after integration of its reverse-transcribed genome. Superantigen-dependent B- and T-cell activation becomes detectable 2 to 3 days after infection. We show here that before this event, B cells undergo a polyclonal activation which does not involve massive proliferation. This first phase of B-cell activation is T cell independent. Moreover, during the first phase of activation, when only a small fraction of B cells is infected by MMTV(SW), viral DNA is detected only in activated B cells. Such a B-cell activation is also seen after injection of murine leukemia virus but not after injection of vaccinia virus, despite the very similar kinetics and intensity of the immune response. Since retroviruses require activated target cells to induce efficient infection, these data suggest that the early polyclonal retrovirus-induced target cell activation might play an important role in the establishment of retroviral infections.
Resumo:
BACKGROUND AND PURPOSE: To compare the delineations and interpretations of target volumes by physicians in different radio-oncology centers. MATERIALS AND METHODS: Eleven Swiss radio-oncology centers delineated volumes according to ICRU 50 recommendations for one prostate and one head and neck case. In order to evaluate the consistency of the volume delineations, the following parameters were determined: 1) the target volumes (GTV, CTV and manually expanded PTV) and their extensions in the three main axes and 2) the correlation of the volume delineated by each pair of centers using the ratio of the intersection to the union (called proximity index). RESULTS: The delineated prostate volume was 105+/-55cm(3) for the CTV and 218+/-44cm(3) for the PTV. The delineated head and neck volume was 46+/-15cm(3) for the GTV, 327+/-154cm(3) for the CTV and 528+/-106cm(3) for the PTV. The mean proximity index for the prostate case was 0.50+/-0.13 for the CTV and 0.57+/-0.11 for the PTV. The proximity index for the head and neck case was 0.45+/-0.09 for the GTV, 0.42+/-0.13 for the CTV and 0.59+/-0.06 for the PTV. CONCLUSIONS: Large discrepancies between all the delineated target volumes were observed. There was an inverse relationship between the CTV volume and the margin between CTV and PTV, leading to less discrepancies in the PTV than is the CTV delineations. There was more spread in the sagittal and frontal planes due to CT pixel anisotropy, which suggests that radiation oncologists should delineate the target volumes not only in the transverse plane, but also in the sagittal and frontal planes to improve the delineation by allowing a consistency check.
Resumo:
Cerebral involvement is an uncommon complication of multiple myeloma. We report on a 64-year-old man hospitalized for a partial seizure. MRI showed two intracerebral lesions, which proved to be plasmacytomas. After complete staging, we retained the diagnosis of immunoglobulin G lambda-type multiple myeloma with CNS involvement. Cytogenetic analysis of plasma cells detected a deletion in the p53 gene at 17p13.1. Despite cranial radiotherapy and systemic chemotherapy, the patient's disease progressed rapidly and he died five months after diagnosis. What makes this case unusual is that overt multiple myeloma had been absent before cerebral involvement was discovered. It confirms the extremely poor prognosis of patients with CNS myeloma even in the presence of aggressive treatment. Cytogenetic abnormalities could be a marker of chromosomal and genetic instability, conferring to multiple myeloma a more aggressive profile.
Resumo:
BACKGROUND: Trigeminal neuralgia (TN) related to multiple sclerosis (MS) is more difficult to manage pharmacologically and surgically. OBJECTIVE: This article aims to evaluate the safety and efficacy of Gamma Knife surgery (GKS) in this special group of patients. METHODS: Between July 1992 and November 2010, 43 cases with more than 1 year of follow-up were operated with GKS for TN related to MS and prospectively evaluated in the Timone University Hospital, Marseille, France. Radiosurgery using the Gamma Knife (model B or C or Perfexion) was performed. A single 4-mm isocenter was positioned at a median distance of 8 mm (range 5.7-14.7) anterior to the emergence of the nerve. A median maximum dose of 85 Gy (range 75-90) was delivered. RESULTS: The median follow-up period was 53.8 months (12-157.1). Thirty-nine patients (90.7%) were initially pain free. Their actuarial probability of remaining pain free without medication at 6 months, 1, 3, 5 and 10 years was 87.2, 71.8, 43.1, 38.3 and 20.5%, respectively, and remained stable till 12 years. The hypoesthesia actuarial rate at 6 months, 1 and 2 years was 11.5, 11.5 and 16%, and remained stable till 12 years. CONCLUSIONS: GKS proved safe and effective in this special group of patients.
Resumo:
All major antihypertensive drug classes i.e. diuretics, beta-blockers, calcium antagonists and blockers of the renin-angiotensin system have been shown to effectively lower blood pressure and hence to reduce cardiovascular outcomes in hypertensive patients. These drugs decrease cardiovascular complications in hypertension essentially because they reduce systemic blood pressure. Nevertheless, there is growing evidence that the extent of the benefits differed between drug classes suggesting that the various classes of antihypertensive agents are not equivalent in their ability to protect against target organ damages and cardiovascular and renal endpoints. More recently, evidence has also accumulated to demonstrate that even combination therapies are not equally effective in reducing the occurrence of cardiovascular complications in hypertension. These recent observations suggest that the means to lower blood pressure are as important as the achieved target blood pressure in the management of hypertensive patients.
Resumo:
RESUME Introduction: Les cellules T mémoires humaines sont classées en trois sous-populations sur la base de l'expression d'un marqueur de surface cellulaire, CD45RA, et du récepteur aux chimiokines, CCR7. Ces sous-populations, nommées cellules mémoires centrales (TcM), mémoires effectrices (TEM) et mémoires effectrices terminales (ITEM), ont des rôles fonctionnels distincts, ainsi que des capacités de prolifération et de régénération différentes. Cependant, la génération de ces différences reste encore mal comprise et on ignore les mécanismes moléculaires impliqués. Matériaux et Méthodes: Des cellules mononucléaires humaines du sang périphérique ont été séparées par cytométrie de flux selon leur expression de CD4, CD8, CD45RA et CCR7 en sous-populations de cellules CD4+ ou CD8+ naïves, TcM, TEM ou ITEM. Dans chacune de ces sous-populations, 14 gènes impliqués dans l'apoptose, la survie ou la capacité proliférative des cellules T ont été quantifiés par RT-PCR en temps réel, relativement à l'expression d'un gène de référence endogène. L'ARN provenant de 450 cellules T a été utilisé par gène et par sous-population. Les gènes analysés (cibles) comprenaient des gènes de survie (BAFF, APRIL, BAFF-R, BCMA, TACI, IL-15Rα, IL-7Rα), des gènes anti-apoptotiques (Bcl-2, BclxL, FLIP), des gènes pro-apoptotiques (Bad, Bax, Fast) et le gène anti-prolifératif, Tob. A l'aide de la méthode comparative delta-delta-CT, le taux d'expression des gènes cibles de chaque sous-population des cellules T mémoires CD4+ et CD8+, à été comparée à leur taux d'expression dans les cellules T naïves CD4+ et CD8+. Résultats: Dans les cellules CD8+, les gènes pro-apoptotiques Bax et Fast étaient surexprimés dans toutes les sous-populations mémoires, tandis que l'expression des facteurs anti-apoptotiques et de survie comme Bcl-2, APRIL et BAFF-R, étaient diminués. Ces deux tendances étaient particulièrement accentuées dans les sous-groupes des cellules mémoires TEM et TTEM. A noter que malgré le fait que leur expression était également diminuée dans les autres cellules mémoires, le facteur de survie IL-7Ra, était sélectivement surexprimé dans la sous-population de cellules TcM et l'expression d'IL-15Ra était sélectivement augmentée dans les TEM. Dans les cellules CD4+, le taux d'expression des gènes analysés était plus variable entre les sujets étudiés que dans les cellules CD8+, ne permettant pas de définir un profil d'expression spécifique. L'expression du gène de survie BAFF par contre, a été significativement augmentée dans toutes les sous-populations mémoire CD4+. Il en va de même pour l'expression d' APRIL et de BAFF-R, bien que dans moindre degré. A remarquer que l'expression du facteur anti-apoptotique Fast a été observée uniquement dans la souspopulation des TTEM. Discussion et Conclusions: Cette étude montre une nette différence entre les cellules CD8+ et CD4+, en ce qui concerne les profils d'expression des gènes impliqués dans la survie et l'apoptose des cellules T mémoires. Ceci pourrait impliquer une régulation cellulaire homéostatique distincte dans ces deux compartiments de cellules T mémoires. Dans les cellules CD8+ l'expression d'un nombre de gènes impliqués dans la survie et la protection de l'apoptose semblerait être diminuée dans les populations TEM et TTEM en comparaison à celle des sous-populations naïves et TEM, tandis que l'expression des gènes pro-apoptotiques semblerait être augmentée. Comme ceci paraît être plus accentué dans les TTEM, cela pourrait indiquer une plus grande disposition à l'apopotose dans les populations CCR7- (effectrices) et une perte de survie parallèlement à l'acquisition de capacités effectrices. Ceci parlerait en faveur d'un modèle de différentiation linéaire dans les cellules CD8+. De plus, l'augmentation sélective de l'expression d'IL-7Ra observée dans le sous-groupe de cellules mémoires TEM, et d'IL-15Ra dans celui des TEM, pourrait indiquer un moyen de sélection pour des réponses immunitaires mémoires à long terme par une réponse distincte à ces cytokines. Dans les cellules CD4+ par contre, aucun profil d'expression n'a pu être déterminé; les résultats suggèrent même une résistance relative à l'apoptose de la part des cellules mémoires. Ceci pourrait favoriser l'existence d'un modèle de différentiation plus flexible avec des possibilités d'interaction multiples. Ainsi, la surexpression sélective de BAFF, APRIL et BAFF-R dans les sous-populations individuelles des cellules mémoires pourrait être un indice de l'interaction de ces sous-groupes avec des cellules B. ABSTRACT Introduction: Based on their surface expression of the CD45 isoform and of the CCR7 chemokine receptor, memory T cells have been divided into the following three subsets: central memory (TAM), effector memory (TEM) and terminal effector memory (ITEM). Distinct functional roles and different proliferative and regenerative capacities have been attributed to each one of these subpopulations. The molecular mechanisms underlying these differences; however, remain poorly understood. Materials and Methods: According to their expression of CD4, CD8, CD45RA and CCR7, human peripheral blood mononuclear cells were sorted by flow-cytometry into CD4+ or CD8+ naïve, TAM, TEM and ITEM subsets. Using real-time PCR, the expression of 14 genes known to be involved in apoptotis, survival or proliferation of T cells was quantified separately in each individual subset, relative to an endogenous reference gene. The RNA equivalent of 450 T cells was used for each gene and subset. The target gene panel included the survival genes BAFF, APRIL, BAFF-R, BCMA, TACI, IL-15Rα and IL-7Rα, the anti-apoptotic genes Bcl2, Bcl-xL and FLIP, the pro-apoptotic genes Bad, Bax and Fast, as well as the antiproliferative gene Tob. Using the comparative CT-method, the expression of the target genes in the three memory T cell subsets of both CD4+ and CD8+ T cell populations was compared to their expression in the naïve T cells. Results: In CD8+ cells, the pro-apoptotic factors Bax and Fast were found to be upregulated in all memory T cell subsets, whereas the survival and anti-apoptotic factors Bcl-2, APRIL and BAFF-R were downregulated. These tendencies were most accentuated in TEM and TTEM subsets. Even though the survival factor IL-7Rα was also downregulated in these subsets, interestingly, it was selectively upregulated in the CD8+ TAM subset. Similarly, IL-15Rαexpression was shown to be selectively upregulated in the CD8+ TEM subset. In CD4+ cells, the expression levels of the analyzed genes showed a greater inter-individual variability than in CD8+ cells, thus suggesting the absence of any particular expression pattern for CD4+ memory T cells. However, the survival factor BAFF was found to be significantly upregulated in all CD4+ memory T cell subsets, as was also the expression of APRIL and BAFF-R, although to a lesser extent. Furthermore, it was noted that the pro-apoptotic gene Fast was only expressed in the TTEM CD4+ subset. Discussion and Conclusions: Genes involved in apoptosis and survival in human memory T cells have been shown to be expressed differently in CD8+ cells as compared to CD4+ cells, suggesting a distinct regulation of cell homeostasis in these two memory T cell compartments. The present study suggests that, in CD8+ T cells, the expression of various survival and antiapoptotic genes is downregulated in TEM and TTEM subsets, while the expression of proapoptotic genes is upregulated in comparison to the naïve and the TAM populations. These characteristics, potentially translating to a greater susceptibility to apoptosis in the CCR7- (effector) memory populations, are accentuated in the TTEM population, suggesting a loss of survival in parallel to the acquisition of effector capacities. This speaks in favour of a linear differentiation model in CD8+ T memory cells. Moreover, the observed selectively increased expression of IL-7Rα in CD8+ TAM cells - as that of IL-15Rα in CD8+ TEM cells -suggest that differential responsiveness to cytokines could confer a selection bias for distinct long-term memory cell responses. Relative to the results for CD8+ T cells, those for CD4+ T cells seem to indicate a certain resistance of the memory subsets to apoptosis, suggesting the possibility of a more flexible differentiation model with multiple checkpoints and potential interaction of CD4+ memory cells with other cells. Thus, the selective upregulation of BAFF, APRIL and BAFF-R in individual memory subsets could imply an interaction of these subsets with B cells.
Resumo:
Genetic experiments established that p63 is crucial for the development and maintenance of pluristratified epithelia. In the RNA interference (RNAi) screening for targets of p63 in keratinocytes, we identified the transcription factor, High Mobility Group (HMG) box protein 1 (HBP1). HBP1 is an HMG-containing repressor transiently induced during differentiation of several cell lineages. We investigated the relationship between the two factors: using RNAi, overexpression, chromatin immunoprecipitations and transient transfections with reporter constructs, we established that HBP1 is directly repressed by p63. This was further confirmed in vivo by evaluating expression in p63 knockout mice and in transgenics expressing p63 in basal keratinocytes. Consistent with these findings, expression of HBP1 increases upon differentiation of primary keratinocytes and HaCaT cells in culture, and it is higher in the upper layers of human skin. Inactivation of HBP1 by RNAi prevents differentiation of keratinocytes and stratification of organotypic skin cultures. Finally, we analyzed the keratinocyte transcriptomes after HBP1 RNAi; in addition to repression of growth-promoting genes, unexpected activation of differentiation genes was uncovered, coexisting with repression of other genes involved in epithelial cornification. Our data indicate that suppression of HBP1 is part of the growth-promoting strategy of p63 in the lower layers of epidermis and that HBP1 temporally coordinates expression of genes involved in stratification, leading to the formation of the skin barrier.
Resumo:
Object: The authors sought to establish whether the safety-efficacy of Gamma Knife radiosurgery (GKRS) as a second treatment for intractable trigeminal neuralgia (ITN) are influenced by prior microvascular decompression (MVD) which remains, for some of the authors, the reference technique. Methods: Between July 1992 and November 2010, 737 patients have been operated with GKRS for ITN and prospectively evaluated in Timone University Hospital in Marseille, France. Among these, 54 patients had a previous MVD history. Radiosurgery using a Gamma Knife (model B or C or Perfexion) was performed relying on both MR and CT targeting. A single 4 mm isocenter was positioned in the cisternal portion of the trigeminal nerve at a median distance of 7.6 mm (range 3.9- 11.9) anteriorly to the emergence of the nerve (retrogasserian target). A median maximum dose of 85 Gy (range 70-90) was delivered. Are further analyzed only 45 patients with previous MVD and a follow-up longer than one year (the patients with megadolichobasilar artery compression and multiple sclerosis were excluded). Results: The median age in this series was 56.75 years (range 28.09-82.39). The median follow-up period was 39.48 months (range 14.10-144.65). All the patients had a past history of surgery, with at least one previous failed MVD, but also a radiofrequency lesion (RFL) in 16 (35.6%) patients, balloon microcompression in 7 (15.6%) patients and glycerol rhizotomy in 1 case (2.2%). Thirty-five patients (77.8%) were initially pain free in a median time of 14 days (range 0, 180). Patients from this group had less probability of being pain free compared to our global population of essential trigeminal neuralgia without previous MVD history (p=0.010, hazard ratio of 0.64). Their probability of remaining pain free at 3, 5, 7 and 10 years was 66.5%, 59.1%, 59.1% and 44.3%, respectively. Twelve patients (34.3%) initially pain free experienced a recurrence with a median delay of 31.21 months (range 3.40-89.93). The hypoesthesia actuarial rate at 1 year was 9.1% and remained stable till 12 years with a median delay of onset of 8 months (range 8-8). Conclusions: Retrogasserian GKRS proofed to be safe and effective on the long-term basis even after failed previous MVD. Even if the initial result of pain free was of only 77.8%, the toxicity was low with only 9.1% hypoesthesia. No patient reported a bothersome hypoesthesia. The probability of maintaining pain relief in long-term was of 44.3% at 10 years.
Resumo:
BACKGROUND: HIV-1 RNA viral load is a key parameter for reliable treatment monitoring of HIV-1 infection. Accurate HIV-1 RNA quantitation can be impaired by primer and probe sequence polymorphisms as a result of tremendous genetic diversity and ongoing evolution of HIV-1. A novel dual HIV-1 target amplification approach was realized in the quantitative COBAS AmpliPrep/COBAS TaqMan HIV-1 Test, v2.0 (HIV-1 TaqMan test v2.0) to cope with the high genetic diversity of the virus. OBJECTIVES AND STUDY DESIGN: The performance of the new assay was evaluated for sensitivity, dynamic range, precision, subtype inclusivity, diagnostic and analytical specificity, interfering substances, and correlation with the COBAS AmpliPrep/COBAS TaqMan HIV-1 (HIV-1 TaqMan test v1.0) predecessor test in patients specimens. RESULTS: The new assay demonstrated a sensitivity of 20 copies/mL, a linear measuring range of 20-10,000,000 copies/mL, with a lower limit of quantitation of 20 copies/mL. HIV-1 Group M subtypes and HIV-1 Group O were quantified within +/-0.3 log(10) of the assigned titers. Specificity was 100% in 660 tested specimens, no cross reactivity was found for 15 pathogens nor any interference for endogenous substances or 29 drugs. Good comparability with the predecessor assay was demonstrated in 82 positive patient samples. In selected clinical samples 35/66 specimens were found underquantitated in the predecessor assay; all were quantitated correctly in the new assay. CONCLUSIONS: The dual-target approach for the HIV-1 TaqMan test v2.0 enables superior HIV-1 Group M subtype coverage including HIV-1 Group O detection. Correct quantitation of specimens underquantitated in the HIV-1 TaqMan test v1.0 test was demonstrated.
Resumo:
Acid-sensing ion channels (ASICs) are neuronal Na(+)-conducting channels activated by extracellular acidification. ASICs are involved in pain sensation, expression of fear, and neurodegeneration after ischemic stroke. Functional ASICs are composed of three identical or homologous subunits, whose extracellular part has a handlike structure. Currently, it is unclear how protonation of residues in extracellular domains controls ASIC activity. Knowledge of these mechanisms would allow a rational development of drugs acting on ASICs. Protonation may induce conformational changes that control the position of the channel gate. We used voltage-clamp fluorometry with fluorophores attached to residues in different domains of ASIC1a to detect conformational changes. Comparison of the timing of fluorescence and current signals identified residues involved in movements that preceded desensitization and may therefore be associated with channel opening or early steps leading to desensitization. Other residues participated in movements intimately linked to desensitization and recovery from desensitization. Fluorescence signals of all mutants were detected at more alkaline pH than ionic currents. Their midpoint of pH dependence was close to that of steady-state desensitization, whereas the steepness of the pH fluorescence relationship was closer to that of current activation. A sequence of movements was observed upon acidification, and its backward movements during recovery from desensitization occurred in the reverse order, indicating that the individual steps are interdependent. Furthermore, the fluorescence signal of some labeled residues in the finger domain was strongly quenched by a Trp residue in the neighboring β-ball domain. Upon channel activation, their fluorescence intensity increased, indicating that the finger moved away from the β ball. This extensive analysis of activity-dependent conformational changes in ASICs sheds new light on the mechanisms by which protonation controls ASIC activity.
Resumo:
Glycogen synthase 2 (Gys-2) is the ratelimiting enzyme in the storage of glycogen in liver and adipose tissue, yet little is known about regulation of Gys-2 transcription. The peroxisome proliferator-activated receptors (PPARs) are transcription factors involved in the regulation of lipid and glucose metabolism and might be hypothesized to govern glycogen synthesis as well. Here, we show that Gys-2 is a direct target gene of PPARalpha, PPARbeta/delta and PPARgamma. Expression of Gys-2 is significantly reduced in adipose tissue of PPARalpha-/-, PPARbeta/delta-/- and PPARgamma+/- mice. Furthermore, synthetic PPARbeta/delta, and gamma agonists markedly up-regulate Gys-2 mRNA and protein expression in mouse 3T3-L1 adipocytes. In liver, PPARalpha deletion leads to decreased glycogen levels in the refed state, which is paralleled by decreased expression of Gys-2 in fasted and refed state. Two putative PPAR response elements (PPREs) were identified in the mouse Gys-2 gene: one in the upstream promoter (DR-1prom) and one in intron 1 (DR-1int). It is shown that DR-1int is the response element for PPARs, while DR-1prom is the response element for Hepatic Nuclear Factor 4 alpha (HNF4alpha). In adipose tissue, which does not express HNF4alpha, DR-1prom is occupied by PPARbeta/delta and PPARgamma, yet binding does not translate into transcriptional activation of Gys-2. Overall, we conclude that mouse Gys-2 is a novel PPAR target gene and that transactivation by PPARs and HNF4alpha is mediated by two distinct response elements.
Resumo:
NY-ESO-1 has been a major target of many immunotherapy trials because it is expressed by various cancers and is highly immunogenic. In this study, we have identified a novel HLA-B*1801-restricted CD8(+) T cell epitope, NY-ESO-1(88-96) (LEFYLAMPF) and compared its direct- and cross-presentation to that of the reported NY-ESO-1(157-165) epitope restricted to HLA-A*0201. Although both epitopes were readily cross-presented by DCs exposed to various forms of full-length NY-ESO-1 antigen, remarkably NY-ESO-1(88-96) is much more efficiently cross-presented from the soluble form, than NY-ESO-1(157-165). On the other hand, NY-ESO-1(157-165) is efficiently presented by NY-ESO-1-expressing tumor cells and its presentation was not enhanced by IFN-γ treatment, which induced immunoproteasome as demonstrated by Western blots and functionally a decreased presentation of Melan A(26-35); whereas NY-ESO-1(88-96) was very inefficiently presented by the same tumor cell lines, except for one that expressed high level of immunoproteasome. It was only presented when the tumor cells were first IFN-γ treated, followed by infection with recombinant vaccinia virus encoding NY-ESO-1, which dramatically increased NY-ESO-1 expression. These data indicate that the presentation of NY-ESO-1(88-96) is immunoproteasome dependent. Furthermore, a survey was conducted on multiple samples collected from HLA-B18(+) melanoma patients. Surprisingly, all the detectable responses to NY-ESO-1(88-96) from patients, including those who received NY-ESO-1 ISCOMATRIX? vaccine were induced spontaneously. Taken together, these results imply that some epitopes can be inefficiently presented by tumor cells although the corresponding CD8(+) T cell responses are efficiently primed in vivo by DCs cross-presenting these epitopes. The potential implications for cancer vaccine strategies are further discussed.