298 resultados para Implantable Infusion pumps
Resumo:
The aim of this study was to investigate the synergistic effects of endurance training and hypoxia on endurance performance in normoxic and hypoxic conditions (approximately 3000 m above sea level) as well as on lactate and glucose metabolism during prolonged exercise. For this purpose, 14 well-trained cyclists performed 12 training sessions in conditions of normobaric hypoxia (HYP group, n = 7) or normoxia (NOR group, n = 7) over 4 weeks. Before and after training, lactate and glucose turnover rates were measured by infusion of exogenous lactate and stable isotope tracers. Endurance performance was assessed during incremental tests performed in normoxia and hypoxia and a 40 km time trial performed in normoxia. After training, performance was similarly and significantly improved in the NOR and HYP groups (training, P < 0.001) in normoxic conditions. No further effect of hypoxic training was found on markers of endurance performance in hypoxia (training x hypoxia interaction, n.s.). In addition, training and hypoxia had no significant effect on lactate turnover rate. In contrast, there was a significant interaction of training and hypoxia (P < 0.05) on glucose metabolism, as follows: plasma insulin and glucose concentrations were significantly increased; glucose metabolic clearance rate was decreased; and the insulin to glucagon ratio was increased after training in the HYP group. In conclusion, our results show that, compared with training in normoxia, training in hypoxia has no further effect on endurance performance in both normoxic and hypoxic conditions or on lactate metabolic clearance rate. Additionally, these findings suggest that training in hypoxia impairs blood glucose regulation in endurance-trained subjects during exercise.
Resumo:
The aim of the present study was to investigate the effects of continuous and acute L-carnitine supplementation of total parenteral nutrition (TPN) on protein and fat oxidation in severe catabolism. A critically ill and severely malnourished male patient received TPN (non protein energy = 41 kcal/kg/day, provided equally as fat and glucose) over 38 days, without L-carnitine for 23 days and with carnitine supplements (15 mg/kg/day) for the following 15 days. Subsequently, he was given carnitine-free enteral nutrition for 60 more days. A four-hour infusion of 100 mg L-carnitine was given on day 11 of each TPN period. Indirect calorimetry was carried out after 11 days of either carnitine-free or supplemented TPN and at the initiation of enteral nutrition. Additional measurements were performed 4 hours and 24 hours after the acute infusions of carnitine. The rate of protein oxidation and the respiratory quotient were found to be higher, and the rate of fat oxidation to be lower, with carnitine-supplemented TPN, than with either carnitine-free TPN or enteral nutrition. Acute infusion of carnitine resulted in an increased rate of protein oxidation and a reduced rate of fat oxidation on both TPN-regimens. These unfavourable effects on protein metabolism may be due to an impairment of fat oxidation by excess amounts of carnitine.
Resumo:
PURPOSE: To compare clinical benefit response (CBR) and quality of life (QOL) in patients receiving gemcitabine (Gem) plus capecitabine (Cap) versus single-agent Gem for advanced/metastatic pancreatic cancer. PATIENTS AND METHODS: Patients were randomly assigned to receive GemCap (oral Cap 650 mg/m(2) twice daily on days 1 through 14 plus Gem 1,000 mg/m(2) in a 30-minute infusion on days 1 and 8 every 3 weeks) or Gem (1,000 mg/m(2) in a 30-minute infusion weekly for 7 weeks, followed by a 1-week break, and then weekly for 3 weeks every 4 weeks) for 24 weeks or until progression. CBR criteria and QOL indicators were assessed over this period. CBR was defined as improvement from baseline for >or= 4 consecutive weeks in pain (pain intensity or analgesic consumption) and Karnofsky performance status, stability in one but improvement in the other, or stability in pain and performance status but improvement in weight. RESULTS: Of 319 patients, 19% treated with GemCap and 20% treated with Gem experienced a CBR, with a median duration of 9.5 and 6.5 weeks, respectively (P < .02); 54% of patients treated with GemCap and 60% treated with Gem had no CBR (remaining patients were not assessable). There was no treatment difference in QOL (n = 311). QOL indicators were improving under chemotherapy (P < .05). These changes differed by the time to failure, with a worsening 1 to 2 months before treatment failure (all P < .05). CONCLUSION: There is no indication of a difference in CBR or QOL between GemCap and Gem. Regardless of their initial condition, some patients experience an improvement in QOL on chemotherapy, followed by a worsening before treatment failure.
Resumo:
BACKGROUND: MDL 100,240 (pyrido[2,1-a] [2]benzazepine-4-carboxylic acid,7-[[2-(acetylthio)-1-oxo-3-phenylpropyl]amino]-1,2,3,4,6,7,8, 12b-octahydro-6-oxo, [4S-[4alpha,7alpha(R(*)),12bbeta]]-) is a molecule possessing an inhibiting ability on both angiotensin converting enzyme (ACE) and neutral endopeptidase, the enzyme responsible for atrial natriuretic peptide (ANP) degradation. Such a dual mechanism of action presents a potential clinical interest for the treatment of hypertension and congestive heart failure. OBJECTIVES: To evaluate the bioavailability of MDL 100,240 and its accumulation over repeated oral administration, using ACE inhibition as a surrogate for plasma drug level and determining its profile after oral and i.v. administration. METHODS: First, in an open, one-period, single-dose study, the ACE inhibition profile was characterised following a 12.5 mg MDL 100,240 i.v. infusion. Second, in a three-group, parallel, randomised, double-blind study, each group of four subjects received q.d., over 8 days, 2.5, 10 or 20 mg of MDL 100,240 orally. The ACE inhibition profile was determined on day 1 and day 8. Trough plasma ACE was measured on days 2, 3 and 4. The recovery of ACE activity was monitored up to 72 h after the last dose of MDL 100,240. RESULTS: ACE inhibition profile was similar on day 1 and day 8, and trough inhibition remained unchanged after the 8 days of treatment with 10 mg or 20 mg. Following repeated 2.5-mg ingestion, trough inhibition increased from 33% to 44% after the eighth dose. The oral bioavailability of MDL 100,240 was estimated at 85%, not statistically different from 100%. The accumulation ratio at steady state was estimated at 112%. Expressing the accumulation ratio in terms of half-life, a t(1/2) of 0.31 days or 7. 5 h was estimated. CONCLUSION: MDL 100,240 (oral solution) has a good bioavailability, as estimated by ACE inhibition, and no drug accumulation seems to occur over 8 days with the 10-mg and 20-mg doses, but a slight rise in the trough level is observed with the 2. 5-mg dose.
Resumo:
The effects of continuous infusions of 2 synthetic atrial natriuretic peptides Ile12-(3-28) (rANP) and Meth12-(3-28) (hANP) eicosahexapeptides on blood pressure, heart rate, skin blood flow, glomerular filtration rate, renal plasma flow, apparent hepatic blood flow, and carotid blood flow were evaluated in normal volunteers. A rANP infusion at increasing rates (1-40 micrograms/min) induced a decrease in blood pressure, an increase in heart rate and in skin blood flow linearly related to the dose administered. In contrast, hANP infusion at 1 microgram/min for 4 hours induced an initial increase followed by a secondary fall in skin blood flow without blood pressure changes. A 4-hour rANP infusion at 0.5 and 5 mcg/min did not alter glomerular filtration rate but induced a delayed and dose-related fall in renal plasma flow from 531 to 461 (p less than 0.05), and from 554 to 342 ml/min (p less than 0.001) respectively, with a consequential rise in the filtration fraction. The 5 mcg/min dose furthermore significantly reduced blood pressure following a latency period of 2.5 hours. A 2-hours rANP infusion at 0.5 micrograms/min induced a fall in apparent hepatic blood flow from 1,087 to 863 ml/min (p less than 0.01), without simultaneously altering blood pressure. Similarly, a 2-hour hANP infusion at 2 micrograms/min altered neither blood pressure nor carotid blood flow. In conclusion, ANP infusion induced changes in systemic and regional hemodynamics varying in direction, intensity and duration.
Resumo:
BACKGROUND: Mortality is increased after a hip fracture, and strategies that improve outcomes are needed. METHODS: In this randomized, double-blind, placebo-controlled trial, 1065 patients were assigned to receive yearly intravenous zoledronic acid (at a dose of 5 mg), and 1062 patients were assigned to receive placebo. The infusions were first administered within 90 days after surgical repair of a hip fracture. All patients received supplemental vitamin D and calcium. The median follow-up was 1.9 years. The primary end point was a new clinical fracture. RESULTS: The rates of any new clinical fracture were 8.6% in the zoledronic acid group and 13.9% in the placebo group, a 35% risk reduction (P = 0.001); the respective rates of a new clinical vertebral fracture were 1.7% and 3.8% (P = 0.02), and the respective rates of new nonvertebral fractures were 7.6% and 10.7% (P = 0.03). In the safety analysis, 101 of 1054 patients in the zoledronic acid group (9.6%) and 141 of 1057 patients in the placebo group (13.3%) died, a reduction of 28% in deaths from any cause in the zoledronic-acid group (P = 0.01). The most frequent adverse events in patients receiving zoledronic acid were pyrexia, myalgia, and bone and musculoskeletal pain. No cases of osteonecrosis of the jaw were reported, and no adverse effects on the healing of fractures were noted. The rates of renal and cardiovascular adverse events, including atrial fibrillation and stroke, were similar in the two groups. CONCLUSIONS: An annual infusion of zoledronic acid within 90 days after repair of a low-trauma hip fracture was associated with a reduction in the rate of new clinical fractures and improved survival. (ClinicalTrials.gov number, NCT00046254.).
Resumo:
Energy metabolism supports both inhibitory and excitatory neurotransmission processes. This study investigated the specific contribution of astrocytic metabolism to γ-aminobutyric acid (GABA) synthesis and inhibitory GABAergic neurotransmission that remained to be ilucidated in vivo. Therefore, we measured (13) C incorporation into brain metabolites by dynamic (13) C nuclear magnetic resonance spectroscopy at 14.1 T in rats under α-chloralose anaesthesia during infusion of [1,6-(13) C]glucose. The enhanced sensitivity at 14.1 T allowed to quantify incorporation of (13) C into the three aliphatic carbons of GABA non-invasively. Metabolic fluxes were determined with a mathematical model of brain metabolism comprising glial, glutamatergic and GABAergic compartments. GABA synthesis rate was 0.11 ± 0.01 μmol/g/min. GABA-glutamine cycle was 0.053 ± 0.003 μmol/g/min and accounted for 22 ± 1% of total neurotransmitter cycling between neurons and glia. Cerebral glucose oxidation was 0.47 ± 0.02 μmol/g/min, of which 35 ± 1% and 7 ± 1% was diverted to the glutamatergic and GABAergic tricarboxylic acid cycles, respectively. The remaining fraction of glucose oxidation was in glia, where 12 ± 1% of the TCA cycle flux was dedicated to oxidation of GABA. 16 ± 2% of glutamine synthesis was provided to GABAergic neurons. We conclude that substantial metabolic activity occurs in GABAergic neurons and that glial metabolism supports both glutamatergic and GABAergic neurons in the living rat brain. We performed (13) C NMR spectroscopy in vivo at high magnetic field (14.1 T) upon administration of [1,6-(13) C]glucose. This allowed to measure (13) C incorporation into the three aliphatic carbons of GABA in the rat brain, in addition to those of glutamate, glutamine and aspartate. These data were then modelled to determine fluxes of energy metabolism in GABAergic and glutamatergic neurons and glial cells.
Resumo:
The objective of this analysis was to assess the radiation exposure associated with (90)Y-ibritumomab tiuxetan when used as consolidation therapy in adults with low or minimal tumor burden after first-line therapy of advanced follicular lymphoma (FL). METHODS: The patients who were enrolled in the phase 3 first-line indolent trial were 18 y or older, with CD20(+) grade 1 or 2 stage III or IV FL, and a partial response, complete response, or unconfirmed complete response to first-line chemotherapy. The patients were allocated randomly to receive a single infusion of unlabeled rituximab 250 mg/m(2) on day -7 and consolidation on day 0 with a single dose of (90)Y-ibritumomab tiuxetan, 14.8 MBq/kg, immediately after unlabeled rituximab, 250 mg/m(2), or no further treatment. On day -7, a subset of patients received an injection of 185 MBq of (111)In-ibritumomab tiuxetan immediately after unlabeled rituximab, 250 mg/m(2), for central dosimetry analysis. Correlations were assessed between organ radiation absorbed dose and toxicity, body weight, body mass index, and progression-free survival. RESULTS: Central dosimetry evaluations were available from 57 of 70 patients. Median radiation absorbed doses were 100 cGy (range, 28-327 cGy) for the red marrow and 72 cGy (range, 46-106 cGy) for the whole body. Radiation absorbed doses did not differ significantly between patients who had a partial response or complete response to initial therapy. Progression-free survival correlated significantly with the whole-body (r = 0.4401; P = 0.0006) and bone marrow (r = 0.2976; P = 0.0246) radiation dose. Body weight was significantly negatively correlated with whole-body radiation dose (r = -0.4971; P < 0.0001). Neither the whole-body radiation dose nor the bone marrow radiation dose correlated with hematologic toxicity. CONCLUSION: In patients with low or minimal residual tumor burden after first-line chemotherapy of advanced FL, whole-body and bone marrow exposure after (90)Y-ibritumomab tiuxetan consolidation showed a significant positive correlation with progression-free survival, whereas dosimetric data could not predict hematologic toxicity.
Resumo:
The effects of infusion of a triglyceride emulsion (which induces peripheral insulin resistance) and amino acids (which stimulate gluconeogenesis) on glucose metabolism were investigated in healthy lean humans during exogenous infusion of glucose. One group of subjects (n = 5) was infused for 7.5 h with 11.1 mumol/kg/min glucose; during the last 4 h, amino acids were also infused at a rate of 3.33 mg/kg/min. A second group of subjects (n = 5) was infused with glucose+lipids (Lipovenös, 10% 10 ml/min) for 7.5 h and amino acids were added during the last 4 h. Infusion of lipids suppressed the increase in glucose oxidation observed during infusion of glucose alone (delta glucose oxidation: -2.1 +/- 1.1 vs. + 4.5 +/- 1.4 mumol/kg/min; P < 0.05) and during infusion of glucose+amino acids (delta glucose oxidation: + 1.6 +/- 1.4 vs. + 10.6 +/- 1.2 mumol/kg/min; P < 0.05). Gluconeogenesis (determined from 13C glucose synthesis during infusion of 13C bicarbonate) increased from 1.1 +/- 0.2 mumol/kg/min during infusion of glucose and 1.6 +/- 0.3 during infusion of glucose+lipids to 3.2 +/- 0.4 and 3.1 +/- 0.4, respectively, when amino acid infusion was superimposed (P < 0.05 in both instances). Plasma glucose concentrations were identical during infusion of glucose alone or glucose+amino acids, with or without lipids. Insulin concentrations were significantly increased by lipids both during infusion of glucose alone and of glucose+amino acids.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
The clinical pharmacology of a synthetic rat atrial natriuretic peptide (rANP) was evaluated in normal volunteers. During a dose-ranging study at 1-40 micrograms/min we observed a dose-dependent decrease in mean intra-arterial blood pressure, an acceleration of the heart rate and a transient increase in blood flow to the skin. During a 4-h constant-dose infusion at 0.5 and 5.0 micrograms/min, inulin clearance remained unchanged but there was a dose-related fall in paraaminohippurate (PAH) clearance and an increase in the filtration fraction. Urinary excretion of sodium, chloride and calcium increased in a dose-related fashion, but with the high dose the excretion curve had a bell-shape. No change in plasma renin activity, angiotensin II and aldosterone was observed during the rANP infusion despite the excretion of large amounts of sodium and a blood pressure reduction with the high dose. Indocyanine green clearance, a measure of hepatic blood flow, was significantly decreased by a 2-h rANP infusion at 1.0 microgram/min. In normal volunteers, therefore, rANP induced vasodilation and blood pressure reduction, a decrease in renal and hepatic blood flow and a natriuretic and transient diuretic effect without activation of the renin-angiotensin-aldosterone system.
Resumo:
The effects of a 7 d high-fructose diet (HFrD) or control diet on lipid metabolism were studied in a group of six healthy lean males. Plasma NEFA and beta-hydroxybutyrate concentrations, net lipid oxidation (indirect calorimetry) and exogenous lipid oxidation (13CO2 production) were monitored in basal conditions, after lipid loading (olive oil labelled with [13C]triolein) and during a standardised mental stress. Lactate clearance and the metabolic effects of an exogenous lactate infusion were also monitored. The HFrD lowered plasma concentrations of NEFA and beta-hydroxybutyrate as well as lipid oxidation in both basal and after lipid-loading conditions. In addition, the HFrD blunted the increase in plasma NEFA and exogenous lipid oxidation during mental stress. The HFrD also increased basal lactate concentrations by 31.8 %, and lactate production by 53.8 %, while lactate clearance remained unchanged. Lactate infusion lowered plasma NEFA with the control diet, and net lipid oxidation with both the HFrD and control diet. These results indicate that a 7 d HFrD markedly inhibits lipolysis and lipid oxidation. The HFrD also increases lactate production, and the ensuing increased lactate utilisation may contribute to suppress lipid oxidation.
Resumo:
Transient high-grade bacteremia following invasive procedures carries a risk of infective endocarditis (IE). This is supported by experimental endocarditis. On the other hand, case-control studies showed that IE could be caused by cumulative exposure to low-grade bacteremia occurring during daily activities. However, no experimental demonstration of this latter possibility exists. This study investigated the infectivity in animals of continuous low-grade bacteremia compared to that of brief high-grade bacteremia. Rats with aortic vegetations were inoculated with Streptococcus intermedius, Streptococcus gordonii or Staphylococcus aureus (strains Newman and P8). Animals were challenged with 10(3) to 10(6) CFU. Identical bacterial numbers were given by bolus (1 ml in 1 min) or continuous infusion (0.0017 ml/min over 10 h). Bacteremia was 50 to 1,000 times greater after bolus than during continuous inoculation. Streptococcal bolus inoculation of 10(5) CFU infected 63 to 100% vegetations compared to 30 to 71% infection after continuous infusion (P > 0.05). When increasing the inoculum to 10(6) CFU, bolus inoculation infected 100% vegetations and continuous infusion 70 to 100% (P > 0.05). S. aureus bolus injection of 10(3) CFU infected 46 to 57% valves. This was similar to the 53 to 57% infection rates produced by continuous infusion (P > 0.05). Inoculation of 10(4) CFU of S. aureus infected 80 to 100% vegetations after bolus and 60 to 75% after continuous infusion (P > 0.05). These results show that high-level bacteremia is not required to induce experimental endocarditis and support the hypothesis that cumulative exposure to low-grade bacteremia represents a genuine risk of IE in humans.
Resumo:
Objectives: Acetate brain metabolism has the particularity to occur specifically in glial cells. Labeling studies, using acetate labeled either with 13C (NMR) or 11C (PET), are governed by the same biochemical reactions and thus follow the same mathematical principles. In this study, the objective was to adapt an NMR acetate brain metabolism model to analyse [1-11C]acetate infusion in rats. Methods: Brain acetate infusion experiments were modeled using a two-compartment model approach used in NMR.1-3 The [1-11C]acetate labeling study was done using a beta scintillator.4 The measured radioactive signal represents the time evolution of the sum of all labeled metabolites in the brain. Using a coincidence counter in parallel, an arterial input curve was measured. The 11C at position C-1 of acetate is metabolized in the first turn of the TCA cycle to the position 5 of glutamate (Figure 1A). Through the neurotransmission process, it is further transported to the position 5 of glutamine and the position 5 of neuronal glutamate. After the second turn of the TCA cycle, tracer from [1-11C]acetate (and also a part from glial [5-11C]glutamate) is transferred to glial [1-11C]glutamate and further to [1-11C]glutamine and neuronal glutamate through the neurotransmission cycle. Brain poster session: oxidative mechanisms S460 Journal of Cerebral Blood Flow & Metabolism (2009) 29, S455-S466 Results: The standard acetate two-pool PET model describes the system by a plasma pool and a tissue pool linked by rate constants. Experimental data are not fully described with only one tissue compartment (Figure 1B). The modified NMR model was fitted successfully to tissue time-activity curves from 6 single animals, by varying the glial mitochondrial fluxes and the neurotransmission flux Vnt. A glial composite rate constant Kgtg=Vgtg/[Ace]plasma was extracted. Considering an average acetate concentration in plasma of 1 mmol/g5 and the negligible additional amount injected, we found an average Vgtg = 0.08±0.02 (n = 6), in agreement with previous NMR measurements.1 The tissue time-activity curve is dominated by glial glutamate and later by glutamine (Figure 1B). Labeling of neuronal pools has a low influence, at least for the 20 mins of beta-probe acquisition. Based on the high diffusivity of CO2 across the blood-brain barrier; 11CO2 is not predominant in the total tissue curve, even if the brain CO2 pool is big compared with other metabolites, due to its strong dilution through unlabeled CO2 from neuronal metabolism and diffusion from plasma. Conclusion: The two-compartment model presented here is also able to fit data of positron emission experiments and to extract specific glial metabolic fluxes. 11C-labeled acetate presents an alternative for faster measurements of glial oxidative metabolism compared to NMR, potentially applicable to human PET imaging. However, to quantify the relative value of the TCA cycle flux compared to the transmitochondrial flux, the chemical sensitivity of NMR is required. PET and NMR are thus complementary.
Resumo:
Introduction: A substantial number of patients with cancer suffer considerable pain at some point during their disease, and approximately 25% of cancer patients die in pain. In cases of uncontrolled pain or intolerable side effects, intrathecal drug delivery system (IDDS) is a recognised management option. Indeed, IDDS offer rapid and effective pain relief with less drug side effects compared to oral or parenteral administration. The aim of this study is to retrospectively review our series of cancer patients treated with IDDS. Method: Data was extracted from the institutional neuromodulation registry. Patients with cancer pain treated with IDDS from 01.01.1997 to 30.12.2009 were analysed for subjective improvement, changes in pain intensity (VAS) and survival time after implantation. Measurements were available for a decreasing number of patients as time since baseline increased. Results: During the studied period, 78 patients were implanted with IDDS for cancer pain. The mean survival time was 11.1 months (median: 3.8 months) and 14 patients (18%) were still alive at the end of the studied period. Subjective improvement was graded between 55 and 83% during the first year. Mean VAS during the first year remained lower than VAS at baseline. Discussion: IDDS has been shown to be cost-effective in several studies. Although initial costs of implantation are high, the cost benefits favour analgesia with implanted intrathecal pumps over epidural external systems after 3 to 6 months in cancer patients. Improved survival has been associated with IDDS and in this series both the mean and median survival times were above the cut-off value of three months. The mean subjective improvement was above 50% during the whole first year, suggesting a good efficacy of the treatment, a finding that is consistent with the results from other groups. Changes in pain intensity are difficult to interpret in the context of rapidly progressive disease such as in terminal cancer. However, mean VAS from 1 thru12 months were lower than baseline, suggesting improved pain control with IDDS, or at least a stabilisation of the pain symptoms. Conclusion: Our retrospective series suggests IDDS is effective in intractable cancer pain and we believe it should be considered even in terminally ill patients with limited life expectancies.
Resumo:
BACKGROUND: The renal enzyme renin cleaves from the hepatic alpha(2)-globulin angiotensinogen angiotensin-(1-10) decapeptide [Ang-(1-10)], which is further metabolized to smaller peptides that help maintain cardiovascular homeostasis. The Ang-(1-7) heptapeptide has been reported to have several physiological effects, including natriuresis, diuresis, vasodilation, and release of vasopressin and prostaglandins. METHODS: To investigate Ang-(1-7) in clinical settings, we developed a method to measure immunoreactive (ir-) Ang-(1-7) in 2 mL of human blood and to estimate plasma concentrations by correcting for the hematocrit. A sensitive and specific antiserum against Ang-(1-7) was raised in a rabbit. Human blood was collected in the presence of an inhibitor mixture including a renin inhibitor to prevent peptide generation in vitro. Ang-(1-7) was extracted into ethanol and purified on phenylsilylsilica. The peptide was quantified by radioimmunoassay. Increasing doses of Ang-(1-7) were infused into volunteers, and plasma concentrations of the peptide were measured. RESULTS: The detection limit for plasma ir-Ang-(1-7) was 1 pmol/L. CVs for high and low blood concentrations were 4% and 20%, respectively, and between-assay CVs were 8% and 13%, respectively. Reference values for human plasma concentrations of ir-Ang-(1-7) were 1.0-9.5 pmol/L (median, 4.7 pmol/L) and increased linearly during infusion of increasing doses of Ang-(1-7). CONCLUSIONS: Reliable measurement of plasma ir-Ang-(1-7) is achieved with efficient inhibition of enzymes that generate or metabolize Ang-(1-7) after blood sampling, extraction in ethanol, and purification on phenylsilylsilica, and by use of a specific antiserum.