287 resultados para Epithelial Cells -- immunology
Resumo:
The CD3ε cytoplasmic tail contains a conserved proline-rich sequence (PRS) that influences TCR-CD3 expression and signaling. Although the PRS can bind the SH3.1 domain of the cytosolic adapter Nck, whether the PRS is constitutively available for Nck binding or instead represents a cryptic motif that is exposed via conformational change upon TCR-CD3 engagement (CD3Δc) is currently unresolved. Furthermore, the extent to which a cis-acting CD3ε basic amino acid-rich stretch (BRS), with its unique phosphoinositide-binding capability, might impact PRS accessibility is not clear. In this study, we found that freshly harvested primary thymocytes expressed low to moderate basal levels of Nck-accessible PRS ("open-CD3"), although most TCR-CD3 complexes were inaccessible to Nck ("closed-CD3"). Ag presentation in vivo induced open-CD3, accounting for half of the basal level found in thymocytes from MHC(+) mice. Additional stimulation with either anti-CD3 Abs or peptide-MHC ligands further elevated open-CD3 above basal levels, consistent with a model wherein antigenic engagement induces maximum PRS exposure. We also found that the open-CD3 conformation induced by APCs outlasted the time of ligand occupancy, marking receptors that had been engaged. Finally, CD3ε BRS-phosphoinositide interactions played no role in either adoption of the initial closed-CD3 conformation or induction of open-CD3 by Ab stimulation. Thus, a basal level of open-CD3 is succeeded by a higher, induced level upon TCR-CD3 engagement, involving CD3Δc and prolonged accessibility of the CD3ε PRS to Nck.
Resumo:
The thymus is the site of T cell development. Several stromal and hematopoietic cell types are necessary for the proper function of thymic selection and eventually peripheral immunity. Thymic epithelial cells (TECs) are essential for T cell lineage commitment, expansion, and maturation in the thymus. We were interested in developing an in vivo model in which exogenous gene expression could be transiently induced in embryonic TEC (Tet-On system). To this end, we have generated a bacterial artificial chromosome (BAC) transgenic mouse line in which the reverse tetracycline-dependent transactivator (rtTA) is expressed under the control of the Foxn1 promoter, a transcriptional factor indispensable for TEC development. To analyze the expression pattern and efficiency of this novel mouse model, we crossed the Foxn1-rtTA founder with a Tet-Responsive Element (TRE)-LacZ GFP mouse reporter to obtain a double transgenic mouse. In the presence of doxycycline, rtTA can interact with TRE and induce the expression of GFP and LacZ. In this double transgenic mouse, we observed that GFP expression was high, inducible and limited to TEC in fetal thymus. In contrast, in adult thymus, when TEC development and maturation is completed, GFP was barely detectable. Therefore, Foxn1-rtTA represents a new and efficient transgenic mouse model to induce genes of interest specifically in fetal thymic epithelium. genesis 51:717-724. © 2013 Wiley Periodicals, Inc.
Resumo:
Purpose: To describe the clinical, histologic and genetic findings of corneal opacities in the trisomy 8 mosaic syndrome. Methods: 3 children aged 8 years (Patients A), 6 years (Patients B) and 1 month (Patients C) respectively, were referred with corneal opacities for ophthalmologic evaluation. The 2 older patients had been previously diagnosed with trisomy 8 mosaicism, while the third was diagnosed after the ocular examination. Automated lamellar keratoplasty (ALTK) was performed on the most amblyopic eye. Histopathologic analysis with immunohistochemical markers and cytogenetic studies by FISH using haploid probes for chromosome 8 and chromosome 16 (control) were performed on the excised corneal lesion. Results: All patients presented vascularized corneal opacities involving the superficial stroma, and amblyopia with a bilateral involvement in two of them (Patients A and B). Post-operative follow-up (range 6-20 months) was satisfactory, with the graft remaining clear and improved visual acuity, allowing iso-acuity and stereoscopy in the one month old child (Patients C). The clinically observed corneal opacities corresponded histopathologically to the replacement of the normal anterior corneal stroma by a choristomatous loose richly vascularized connective tissue containing mucopolysacharides. Bowman's membrane was absent. There were no adnexal structures. The overlaying epithelium expressed keratin 3 in all three cases. Keratin 19 was found in the suprabasal epithelial cells in one case but was absent in the other cases. There were no expression of keratin 7 and 1 as well as MUC5AC in the epithelial cells. FISH analysis from 100 interphase cells of the affected tissue and normal conjontival probe revealed normal diploid cells. Conclusions: In this series, the corneal opacities associated with trisomy 8 mosaic syndrome share a common clinical, histopathological and genetic features. ALTK should be considered at diagnosis to prevent amblyopia in these children.
Resumo:
Dysregulation of intestinal epithelial cell performance is associated with an array of pathologies whose onset mechanisms are incompletely understood. While whole-genomics approaches have been valuable for studying the molecular basis of several intestinal diseases, a thorough analysis of gene expression along the healthy gastrointestinal tract is still lacking. The aim of this study was to map gene expression in gastrointestinal regions of healthy human adults and to implement a procedure for microarray data analysis that would allow its use as a reference when screening for pathological deviations. We analyzed the gene expression signature of antrum, duodenum, jejunum, ileum, and transverse colon biopsies using a biostatistical method based on a multivariate and univariate approach to identify region-selective genes. One hundred sixty-six genes were found responsible for distinguishing the five regions considered. Nineteen had never been described in the GI tract, including a semaphorin probably implicated in pathogen invasion and six novel genes. Moreover, by crossing these genes with those retrieved from an existing data set of gene expression in the intestine of ulcerative colitis and Crohn's disease patients, we identified genes that might be biomarkers of Crohn's and/or ulcerative colitis in ileum and/or colon. These include CLCA4 and SLC26A2, both implicated in ion transport. This study furnishes the first map of gene expression along the healthy human gastrointestinal tract. Furthermore, the approach implemented here, and validated by retrieving known gene profiles, allowed the identification of promising new leads in both healthy and disease states.
Resumo:
Efficient priming of adaptive immunity depends on danger signals provided by innate immune pathways. As an example, inflammasome-mediated activation of caspase-1 and IL-1beta is crucial for the development of reactive T cells targeting sensitizers like dinitrofluorobenzene (DNFB). Surprisingly, DNFB and dinitrothiocyanobenzene provide cross-reactive Ags yet drive opposing, sensitizing vs tolerizing, T cell responses. In this study, we show that, in mice, inflammasome-signaling levels can be modulated to turn dinitrothiocyanobenzene into a sensitizer and DNFB into a tolerizer, and that it correlates with the IL-6 and IL-12 secretion levels, affecting Th1, Th17, and regulatory T cell development. Hence, our data provide the first evidence that the inflammasome can define the type of adaptive immune response elicited by an Ag, and hint at new strategies to modulate T cell responses in vivo.
Deregulated MHC class II transactivator expression leads to a strong Th2 bias in CD4+ T lymphocytes.
Resumo:
The MHC class II (MHC-II) transactivator (CIITA) is the master transcriptional regulator of genes involved in MHC-II-restricted Ag presentation. Fine tuning of CIITA gene expression determines the cell type-specific expression of MHC-II genes. This regulation is achieved by the selective usage of multiple CIITA promoters. It has recently been suggested that CIITA also contributes to Th cell differentiation by suppressing IL-4 expression in Th1 cells. In this study, we show that endogenous CIITA is expressed at low levels in activated mouse T cells. Importantly CIITA is not regulated differentially in murine and human Th1 and Th2 cells. Ectopic expression of a CIITA transgene in multiple mouse cell types including T cells, does not interfere with normal development of CD4(+) T cells. However, upon TCR activation the CIITA transgenic CD4(+) T cells preferentially differentiate into IL-4-secreting Th2-type cells. These results imply that CIITA is not a direct Th1-specific repressor of the IL-4 gene and that tight control over the expression of CIITA and MHC-II is required to maintain the normal balance between Th1 and Th2 responses.
Resumo:
BACKGROUND: The purpose of this work was to characterize the expression of drug and nutrient carriers along the anterior-posterior and crypt-villus axes of the intestinal epithelium and to study the validity of utilizing whole gut tissue rather than purified epithelial cells to examine regional variations in gene expression. RESULTS: We have characterized the mRNA expression profiles of 76 % of all currently known transporters along the anterior-posterior axis of the gut. This is the first study to describe the expression profiles of the majority of all known transporters in the intestine. The expression profiles of transporters, as defined according to the Gene Ontology consortium, were measured in whole tissue of the murine duodenum, jejunum, ileum and colon using high-density microarrays. For nine transporters (Abca1, Abcc1, Abcc3, Abcg8, Slc10a2, Slc28a2, Slc2a1, Slc34a2 and Slc5a8), the mRNA profiles were further measured by RT-PCR in laser micro-dissected crypt and villus epithelial cells corresponding to the aforementioned intestinal regions. With respect to differentially regulated transporters, the colon had a distinct expression profile from small intestinal segments. The majority (59 % for p cutoff < or = 0.05) of transporter mRNA levels were constant across the intestinal sections studied. For the transporter subclass "carrier activity", which contains the majority of known carriers for biologically active compounds, a significant change (p < or = 0.05) along the anterior-posterior axis was observed. CONCLUSION: All nine transporters examined in laser-dissected material demonstrated good replication of the region-specific profiles revealed by microarray. Furthermore, we suggest that the distribution characteristics of Slc5a8 along the intestinal tract render it a suitable candidate carrier for monocarboxylate drugs in the posterior portion of the intestine. Our findings also predict that there is a significant difference in the absorption of carrier-mediated compounds in the different intestinal segments. The most pronounced differences can be expected between the adjoining segments ileum and colon, but the differences between the other adjoining segments are not negligible. Finally, for the examined genes, profiles measured in whole intestinal tissue extracts are representative of epithelial cell-only gene expression.
Resumo:
Comparative ultrastructural observations are presented of the distended bladder of a hibernating dormouse (Muscardinus avellanarius) and a relaxed organ taken from an active animal. The distended bladder of the hibernating animal has an extremely thin wall lined with a three-layer urothelium. An osmiophilic coat lines the luminal surface of the urothelium in the hibernating animal, but it is very thin indeed in the specimen from the active dormouse. In the urothelium of the distended bladder, a larger number of fusiform vesicles (FVs, typical structures of the urothelium with asymmetric unit membrane) is found. On the contrary, lysosomes, multivesicular bodies, and interdigitation of plasma membrane between adjacent cells are all more frequent in the relaxed bladder of the active dormouse. Results suggest that hibernating animals can be a useful model for investigating the biology of epithelial cells in the mammalian bladder.
Resumo:
Cells from two melanoma cell lines, Me43 and GLL-19, were cloned in methylcellulose cultures and 20 randomly selected colonies from each line were picked up by micromanipulation, expanded in liquid cultures, and considered as clones of the original cell lines. The antigenic cell surface phenotype of these clones defined by panel of 12 monoclonal antibodies (MAb) was analyzed by flow microfluorometry (FMF) using a fluorescence-activated cell sorter (FACS II) and compared with the known stable phenotype of the parent cell line. The antibody panel consisted of eight MAb against melanoma-associated antigens, two MAb against monomorphic determinants of HLA-DR (la) and HLA-ABC, respectively, one MAb against the common acute lymphoblastic leukemia antigen (CALLA) and one MAb against carcinoembryonic antigen used as control. A remarkable heterogeneity in terms of qualitative and quantitative expression of the cell surface antigens studied was observed among and within the different clones. The single-cell origin of the clones was assessed by comparing the clonogenic cell frequency, determined by limiting dilutions in microculture plates, with the cloning efficiency observed in Petri dishes. Both techniques using methylcellulose medium gave the same percentages of growing colonies. Cells from four Me43 clones were recloned in methylcellulose and the phenotype of five randomly selected subclones from each clone was analysed using the same panel of monoclonal antibodies. Each subclone also displayed heterogeneity with individual phenotypes different from that of the original clone and from the parental Me43 cell line. The antigen expression by individual cells in situ within clones was analyzed on frozen sections from colonies using the same panel of MAb and a biotin-avidin immunoperoxidase method. The results confirmed the marked heterogeneity of antigen expression within and among colonies, as indicated by the FMF analysis.
Resumo:
After superantigen challenge a significant proportion of superantigen-reactive T cells remain undivided. We provide evidence that the lymphoid environment limits T cell proliferation in the secondary lymphoid organs when the frequency of superantigen reactive T cells is unusually high. We monitored T cell proliferation and the percentage of undivided cells when the frequency of superantigen-reactive T cells was low (1%), intermediate (15%) or high (30-100%) by transferring fluorescently labeled cells into different recipients. When the frequency was low, practically all the reactive T cells entered cell cycle and proliferated maximally. At intermediate frequencies a large proportion of reactive T cells did not enter cell cycle and the whole population divided less. A further increase in reactive T cells did not alter the percentage of undivided cells but induced a further decrease in the number of cell divisions. Interestingly, the observations made with superantigens were confirmed with peptide antigen and TCR-transgenic mice. Moreover, in vivo and in vitro data suggest that dendritic cells are the most likely candidates in limiting T cell proliferation in the lymphoid environment. In conclusion, we show that the availability of APC in the lymphoid environment can quantitatively limit T cell priming.
Resumo:
Arenaviruses are enveloped RNA viruses with a nonlytic life cycle that cause acute and persistent infections. Here, we investigated the role of the host cell's unfolded protein response (UPR) in infection of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). In mammalian cells, the endoplasmic reticulum (ER) chaperone protein GRP78/BiP functions as the principal sensor for the induction of the UPR and interacts with three mediators: kinase/endonuclease inositol-requiring protein 1 (IRE1), PKR-like ER kinase (PERK), and activating transcription factor 6 (ATF6). Acute infection with LCMV resulted in a selective induction of the ATF6-regulated branch of the UPR, whereas pathways controlled by PERK and IRE1 were neither activated nor blocked. Expression of individual LCMV proteins revealed that the viral glycoprotein precursor (GPC), but not that of other viral proteins, was responsible for the induction of ATF6. Rapid downregulation of the viral GPC during transition from acute to persistent LCMV infection restored basal levels of UPR signaling. To address a possible role of ATF6 signaling in LCMV infection, we used cells deficient in site 2 protease (S2P), a metalloprotease required for the activation of ATF6. Cells deficient in S2P showed significantly lower levels of production of infectious virus during acute but not persistent infection, indicating a requirement for ATF6-mediated signaling for optimal virus multiplication. In summary, acute LCMV infection seems to selectively induce the ATF6-regulated branch of the UPR that is likely beneficial for virus replication and cell viability, but it avoids induction of PERK and IRE1, whose activation may be detrimental for virus and the host cell.
Resumo:
The specificity of recognition of pMHC complexes by T lymphocytes is determined by the V regions of the TCR alpha- and beta-chains. Recent experimental evidence has suggested that Ag-specific TCR repertoires may exhibit a more V alpha- than V beta-restricted usage. Whether V alpha usage is narrowed during immune responses to Ag or if, on the contrary, restricted V alpha usage is already defined at the early stages of TCR repertoire selection, however, has remained unexplored. Here, we analyzed V and CDR3 TCR regions of single circulating naive T cells specifically detected ex vivo and isolated with HLA-A2/melan-A peptide multimers. Similarly to what was previously observed for melan-A-specific Ag-experienced T cells, we found a relatively wide V beta usage, but a preferential V alpha 2.1 usage. Restricted V alpha 2.1 usage was also found among single CD8(+) A2/melan-A multimer(+) thymocytes, indicating that V alpha-restricted selection takes place in the thymus. V alpha 2.1 usage, however, was independent from functional avidity of Ag recognition. Thus, interaction of the pMHC complex with selected V alpha-chains contributes to set the broad Ag specificity, as underlined by preferential binding of A2/melan-A multimers to V alpha 2.1-bearing TCRs, whereas functional outcomes result from the sum of these with other interactions between pMHC complex and TCR.
Resumo:
The prototypic arenavirus lymphocytic choriomeningitis virus (LCMV), which naturally persists in rodents, represents a model for HIV, HBV, and HCV. Cleavage of the viral glycoprotein precursor by membrane-bound transcription factor peptidase, site 1 (Mbtps1 or site-1 protease), is crucial for the life cycle of arenaviruses and therefore represents a potential target for therapy. Recently, we reported a viable hypomorphic allele of Mbtps1 (woodrat) encoding a protease with diminished enzymatic activity. Using the woodrat allele, we examine the role of Mbtps1 during persistent LCMV infection. Surprisingly, Mbtps1 inhibition limits persistent but not acute viral infection and is associated with an organ/cell type-specific decrease in viral titers. Analysis of bone marrow-derived dendritic cells from woodrat mice supports their specific role in resolving persistent viral infection. These results support in vivo targeting of Mbtps1 in the treatment of arenavirus infections and demonstrate a critical role for dendritic cells in persistent viral infections.
Resumo:
PURPOSE: When treating peripheral ectatic disease-like pellucid marginal degeneration (PMD), corneal cross-linking with UV-A and riboflavin (CXL) must be applied eccentrically to the periphery of the lower cornea, partly irradiating the corneal limbus. Here, we investigated the effect of standard and double-standard fluence corneal cross-linking with riboflavin and UV-A (CXL) on cornea and corneal limbus in the rabbit eye in vivo. METHODS: Epithelium-off CXL was performed in male New Zealand White rabbits with two irradiation diameters (7 mm central cornea, 13 mm cornea and limbus), using standard fluence (5.4 J/cm(2)) and double-standard fluence (10.8 J/cm(2)) settings. Controls were subjected to epithelial removal and riboflavin instillation, but were not irradiated with UV-A. Following CXL, animals were examined daily until complete closure of the epithelium, and at 7, 14, 21, and 28 days. Animals were killed and a corneoscleral button was excised and processed for light microscopy and immunohistochemistry. RESULTS: For both irradiation diameters and fluences tested, no signs of endothelial damage or limbal vessel thrombosis were observed, and time to re-epithelialization was similar to untreated controls. Histological and immunohistochemical analysis revealed no differences in the p63 putative stem cell marker expression pattern. CONCLUSIONS: Even when using fluence twice as high as the one used in current clinical CXL settings, circumferential UV-A irradiation of the corneal limbus does not alter the regenerative capacity of the limbal epithelial cells, and the expression pattern of the putative stem cell marker p63 remains unchanged. This suggests that eccentric CXL may be performed safely in PMD.